• Title/Summary/Keyword: Electric-hybrid driving

Search Result 134, Processing Time 0.021 seconds

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

Development of the Calorimeter to Measure Heat Rate Generated from Battery for EV & HEV (전기자동차용 축전지의 발열량 측정을 위한 열용량계 개발)

  • Yang Cheol-Nam;Park Seong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.218-220
    • /
    • 1999
  • The performance of the Electric Vehicle and Hybrid Electric Vehicle depends on that of the battery pack composed of series connected batteries. And thermal property is one of the main factors which decide the performance of the battery pack. So heat generation rate from the battery under the various driving mode must be measured as precise as possible because thermal characteristics of the battery affect the driving performance and battery pack's life cycle. Besides, to design and develop the battery thermal management system for the EV and HEV, the measurements of the thermal properties of the batteries are needed. However, the established calorimeter is not adequate to test an EV's battery because its cavity is too small to accommodate the EV's battery. Therefore we developed the calorimeter to test the thermal property of the EV's battery. Its cavity size is 120mm long, 75mm wide and 200mm high. The calorimeter is calibrated by the dummy cell which generates the heat rate from zero to 200W. The measuring accuracy of the calorimeter is within $2\%$ and its voltage stability is 2.5mV in the constant temperature bath.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis (전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술)

  • Moon, Jeong-Ki;Park, Kwang-Seok;Yoo, Yoon-Ki;Yun, Young-Ki
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.