• Title/Summary/Keyword: Electric transformer

Search Result 697, Processing Time 0.025 seconds

Single Phase NPC Module - Development of 75KVA Single Phase Smart Transformer with 3 Serial Cascade Configuration (단상 NPC Module- 3직렬 Cascade 구성 방식의 75KVA급 단상 지능형 변압기 개발)

  • Park, Ju-Young;Niyitegeka, Gedeon;Cho, Kyeong-Sig;Kim, Myung-Yong;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.118-125
    • /
    • 2017
  • In this paper, we propose a smart transformer for a smart transformer miniature model, which can replace a 60 [Hz] single-phase transformer installed in an electric vehicle. The proposed smart transformer is lighter than a conventional transformer, can control instantaneous voltage, and can be expected to improve power quality through harmonic compensation. The proposed intelligent transformer consists of an incoming part, an AC/DC converter, and a dual active bridge. Only the incoming part and the AC/DC converter are described in this paper. The proposed intelligent transformer has 75 kVA 3.3 kV input and 750 V DC output, which are verified by simulation and experiment.

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

Scott Transformer Modeling using Simulink on the AC Substation (Simulink를 이용한 교류 급전변전소의 스코트변압기 모델링)

  • Kim, Tae-Geun;Park, Young;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2317-2322
    • /
    • 2011
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using Sinulink.

  • PDF

Scott Transformer Modeling using PSIM on the AC Substation in the Elect ric Railroad (전기철도의 교류 급전변전소에서 PSIM을 이용한 스코트변압기 모델링)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1892-1897
    • /
    • 2010
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. PSIM(Power Electronics Simulator) is optimal simulation software in field of the power electronics and provide the simple and convenient user interface. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using PSIM.

  • PDF

Analysis of Insulation Characteristics for Transformer Insulating Materials According to Thermal Degradation (열 열화에 따른 변압기 절연물의 절연특성 분석)

  • Lee, Min-Gu;Shim, Jae-Myung;Lim, Kyung-Bum;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1688-1693
    • /
    • 2016
  • In this study shall investigate the influence upon the electrical property of transformer oil due to the heat among accelerated heat degradation experiment for a constant hour in the typical insulation oils of mineral base oil, silicon base oil and vegetable oil. In addition, the electric insulation performance of insulation materials in transformer shall be evaluated through the electric property analysis according to the heat degradation of epoxy insulation material, which has been used for electric facilities such as a molded transformer.

Preparation of High-Efficient Oil-based Nanofluids and It's Application to the Transformer (고효율 나노절연유 제조 및 변압기에의 적용)

  • Yoo, Hyun-Sung;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.31-32
    • /
    • 2007
  • Oil-based nanofluids are prepared by dispersing spherical and fiber-shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes are compared in this investigation. It is obvious that the combination of nanoparticle, surfactant and surface modification process is very important for the dispersity of nanofluids. For ($Al_2O_3$+AIN) particles with 1% volume fraction, the enhancement of thermal conductivity and convective heat transfer coefficient is nearly 11% and 30%, respectively, compared to pure transformer oil. The cooling effect of ($Al_2O_3$+AlN)-oil nanofluids on the heating element and oil itself is confirmed by a natural convection test using a prototype transformer.

  • PDF

A Study on Monthly Electric Energy Estimation of Pole-Transformer Using NLRE Curve (NLRE 곡선을 이용한 주상 변압기 월간 사용전력량 추정에 관한 연구)

  • Im, Jin-Soon;Yun, Sang-Yun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.58-60
    • /
    • 2000
  • In this paper we present an estimation method of electric energy[kWh] for load management of pole-transformer. For the electric energy estimation, we use the nonlinear load research based estimation(NLRE) algorithm. The NLRE curve is the normalized annual cumulative energy consumption for a particular day in a year. And, it is used for the coefficient estimation. Estimation method of suggested electric energy of pole-transformer used billing cycle electric energy estimation equation is verified as comparison billing cycle electric energy and estimated electric energy. We can reduce the error of peak load estimation by suggested method than the conventional method in domestic.

  • PDF

Propagation Characteristics of Ultra High Frequency Partial Discharge Signals in Power Transformer (전력용변압기에서 UHF 부분방전 신호의 전파 특성)

  • Yoon, Jin-Yul;Han, Ki-Son;Ju, Hyung-Jun;Goo, Sun-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.798-803
    • /
    • 2010
  • This paper describes the characteristics of electromagnetic wave propagation in power transformer. A transformer which is similar to 154 kV single phase on-site transformer unit was provided for the purpose of the experiment. The 12 dielectric windows on the transformer enclosure to install UHF (ultra high frequency) sensors and the full scale mock ups of winding and the core were also equipped in the transformer. Every sensors to be installed to the transformer was tested and verified whether they show same characteristics or not before the experiment. A discharge gap which was used as a PD (partial discharge) source moved to several necessary locations in the transformer to simulate dielectric defects. Propagation times of electromagnetic wave signal from PD source to sensors decided by the routes of both reflection phenomenon and diffraction phenomenon were compared each other. The experimental results showed propagation route of the PD signal makes an effect on the frequency spectrum of front part of the signal and the magnitude of the signal and propagation time of the signal when the signal is captured on the sensor.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

A New method for the Calculation of Leakage Reactance in Power Transformers

  • Dawood, Kamran;Alboyaci, Bora;Cinar, Mehmet Aytac;Sonmez, Olus
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1883-1890
    • /
    • 2017
  • Transformers are one of the most precious elements of the electric power system. Stability and reliability of the electric power network mainly depend on the working of the transformer. Leakage reactance of the transformer is one of the important factors and accurate calculation of the leakage reactance is necessary for the transformer designers and electric distributors. Leakage reactance of the transformer depends on the geometry of the transformer. There are many different methods for the calculations of the leakage reactance however mostly are usable when the axial heights of the high voltage and low voltage windings are equal. When the axial heights of high voltage and low voltage windings are asymmetric most of the analytical methods are not reliable. In this study, a new analytical method is introduced for the calculation of the leakage reactance. Fourteen different transformers are investigated in this study and four of them are presented in this paper. The results of the new analytical method are compared with the experimental results. Other analytical and numerical methods are also compared with this new method. Results show that this method is more reliable and accurate as compared to the other analytical methods. The maximum relative error between short-circuit test and proposed method for these fourteen transformers was less than 2.8%.