• Title/Summary/Keyword: Electric strength

Search Result 1,180, Processing Time 0.032 seconds

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

A Study on Estimation on Air Exchange Rate and Source Strength in Indoor Air Using Multiple Measurements of Nitrogen Dioxide (이산화질소 다중측정을 이용한 실내공기의 환기량 밀 발생량 추정에 관한 연구)

  • Yang, Won-Ho;Lee, Ki-Young;Chung, Moon-Ho;Zong, Moon-Shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.160-169
    • /
    • 2000
  • Daily indoor and outdoor nitrogen dioxide ($NO_2$) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. The penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination ($R^2$) in electric and gas range houses were $0.70{\pm}0.13$ and $0.57{\pm}0.21$, respectively. The source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were $0.65{\pm}0.18$ and $0.56{\pm}0.12$, respectively. Mean and standard deviation of intercepts in electric and gas range houses were $1.49{\pm}1.25$ and $5.77{\pm}3.55$, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were $1.1/hr{\pm}1.5$. Presence of gas range was the most significant factor contributing to indoor $NO_2$ level in house characteristics (p=0.003). In gas range houses, source strengths ranged from 4.1 to $33.1cm^3/hr{\cdot}m^3$ with a mean $12.7cm^3/hr{\cdot}m^3$ and a standard deviation 9.8. The source strengths of gas range houses were significantly different from those of electric range houses by t-test (p<0.001)

  • PDF

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

The Study on Microstructures and Mechanical Properties of Mild Steel Joined with Various Spot Welding Conditions (점용접 조건에 의한 연강의 미세조직 및 기계적특성에 관한 연구)

  • 강연철;김대영;김완기;김석원
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Spot welding, namely a kind of electric resisting welding has been used widely in field of automobile and aircraft industries because of easiness to apply. Specimens used in this study was a mild steel of 1.2mm thickness and the electrode was a Cu-Cr alloy of 6mm diameter. The surface sheared of specimens after testing of tensile shear was observed by SEM(scanning electron microscope) after ultrasonic cleaning for 10min., and microstructures and grain size of all specimens were measured with using of O.M.(Optical microscope). By the means of measurement and observations of tensile shear load, fatigue strength and share surface, the weldability of spot welding was evaluated. When tensile shearing testing, fracture starting point in all specimens was took place at the bond between HAZ(Heat affected zone) and nugget. With increasing in number of layers, fatigue strength was decreased. With increasing in electric current, grain size in the HAZ became more fine.

  • PDF

AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer (배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

Dielectric Properties of Modified Epoxy Resins under Inhomogeneous Electric Field (개질된 에폭시 수지계의 불평등 전계하에서 절연특성)

  • An, Hyun-Soo;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1585-1587
    • /
    • 1996
  • The dielectric properties of DGEBA/MDA/GN system under inhomoneous electric field were investigated. As GN contents increased, impact strength increased, but dielectric breakdown strength decreased. At $150^{\circ}C$, the dielectric breakdown strength decreased and uniformly maintained with the increment of distance between two electrodes. The life-time of epoxy resin increased with the decrement of applied voltage, but dielectric breakdown didn't occur below specific applied voltage.

  • PDF

Prediction of Insulation Reliability and Breakdown Life in Epoxy Composites (에폭시 복합체의 절연신뢰도 및 파괴수명 예측)

  • 신철기;박건호;왕종배;김성역;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.260-264
    • /
    • 1996
  • In this study, the dieiectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability . As a result. first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature, and the breakdown strength of specimens because it is believed that the adding filler farms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since the suggests that silane coupling agent improves interfacial combination and relays electric field concentration. Finally, from the analysis 7f weibull distribution. it was confirmed that as the allowed breakdown probability was given by 0.11[%].

  • PDF

Dielectric Breakdown Characteristics of $Al_2O_3$ Filled DGEBA/MDA/SN System ($Al_2O_3$가 충전된 DGEBA/MDA/SN 계의 절연열화 특성)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.209-211
    • /
    • 1996
  • The dielectric breakdown characteristics of DGEBA/MDA/SN system filled with $Al_2O_3$ under AC high electric field were investigated. As the filler content increased, the dielectric breakdown strength increased, but decreased at higher filler content than 5 phr. The probability of defects such as air bubbles, peel between filler and epoxy resin insulator, etc. increase proportionally to filler contents. Fillers blockade the treeing growth and relax the electric field at the tip of electrical tree and the treeing propagation rate decreases so that the strength showed higher strength at lower filler content than 5 phr.

  • PDF

A Study on Thermal, Mechanical and Electrical Properties as Silane Treated Epoxy/MICA Composites (실란처리된 Epoxy/MICA 콤포지트의 열적, 기계적 전기적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • In this study, epoxy/mica composite was prepared by mixing with mechanical stirrer together with homogenizer, and the effect of amino-type silane coupling agent was also studied. To reduce the viscosity without any decrement of other properties, 1,4-Butanediol diglycidyl ether (1,4-BDGE) as an aliphatic epoxy reactive diluent was introduced to the epoxy/mica composite in order to use as vanish for high voltage motor and generator stator winding. It was confirmed by scanning electron microscopy (SEM) observation that interfacial characteristics between organic epoxy and inorganic mica was modified by coupling agent treatment so that glass transition temperature increased, and tensile strength and electrical breakdown strength increased. The properties were estimated by Weibull statistical analysis and the ac electrical breakdown strength was 20.2% modified by treating silane coupling agent.