• Title/Summary/Keyword: Electric resistivity

Search Result 443, Processing Time 0.035 seconds

A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults (과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구)

  • Jo, Si-Hwan;Kwak, Dong-Kurl;Jung, Do-Young;Shim, Jae-Sun;Kim, Jung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13) (저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.604-609
    • /
    • 2014
  • The thermoelectric power and dc conductivity of $La_{2/3+x}TiO_{3-{\delta}}$ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by $S_0+BT$. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between $ln{\rho}/T$ and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.

Effect of Temperature on Current Density of Nano Composite XLPE Material (나노복합체를 함유한 XLPE의 전류밀도에 미치는 온도의 영향)

  • Jung, Hyun-Jung;Yang, Yi-Seul;Nam, Jin-Ho;Nam, Gi-Joon;Kim, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.413-417
    • /
    • 2019
  • In this study, the volume resistivity of XLPE materials with various voltage ratings was discussed. The volume resistivity of the developed XPLE nanocomposite was measured, and the conductivity mechanism of the material was also examined. The ASTM D 257 and IEC 60093 measurement methods were used for these tests. The equipment was designed to measure up to a temperature of $200^{\circ}C$, and the electrode structure was designed to maintain the thickness and temperature uniformity of the sample. The conductivity of the sample decreased with temperature, and the samples reached saturation within 500s, after which the conductivity leveled off. By analyzing the current density and the electric field, we can well explain the electric conductivity behavior of our sample with the Schottky mechanism.

Colossal Magnetoresistance in La-Ca-Mn-O

  • Jin, Sungho
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

  • PDF

Electrical Characteristics of ZnO Piezo-electric Thin film for SAW filter (SAW 필터용 ZnO 압전 박막의 전기적 특성)

  • Lee, Dong-Yoon;Yoon, Seok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.909-916
    • /
    • 2005
  • The structural and electrical property of RF magnetron sputtered ZnO thin film have been studied as a function of RF power, substrate temperature, oxygen/argon gas ratio and film thickness at constant sputtering power, sputtering working pressure and target-substrate distance. To analyze a crystallo-graphic properties of the films, $\theta$/2$\theta$ mode X-ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity and surface roughness highly depended on oxygen/argon gas ratio. The resistivity of ZnO thin film(6000 ${\AA}$) rapidly increased with increasing oxygen ratio and the resistivity value of $9 {\ast} 10^7 {\Omega}cm$ was obtained at a working pressure of 10 mTorr with the same oxygen/argon gas ratio. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with the same oxygen/argon gas ratio showed the excellent roughness value of 28.7 ${\AA}$. With increase of the substrate temperature, The C-axis preferred orientation of ZnO thin film increases and the resistivity decreases due to deviation from the stoichiometric ZnO due to oxygen deficiency.

Behavior of Shear Zone by Improved Direct Shear Test (개선된 직접전단시험을 이용한 전단영역의 거동)

  • Byeon, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

Method for Safety-Decision to Apply International Standard Grounding Systems to Domestic Power System by Computer Simulation (국제 규격 접지시스템의 국내 적용을 위한 시뮬레이션 기반의 안전도 평가 방안)

  • Lee, Soon;Kim, Jung-Hoon;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.344-353
    • /
    • 2008
  • To apply the appropriate new grounding system to domestic power system, safety has to be guaranteed under the given circumstances. It is not possible to decide the safety of grounding systems by the experimental test because safety experiments directly relate to the human life and the installed electric machines. Therefore, the computer simulation program to decide the safety of grounding systems based on the IEC standard systems, has to be developed. This paper proposes the computer simulation based method to decide the safety of grounding system with the concepts of touch voltage, step voltage, human resistivity, and applied electric current according to the several conditions of human body located in the corresponding grounding systems. The proposed method is implemented by Matlab/Simulink and Visual C++ programming tools for its visualization.

Nondestructive Imaging of Subspace Objects by 2D Electrical Resistance Tomography (2차원 전기비저항토모그래피를 이용한 지하물체의 비파괴 영상화)

  • Kim, Ho-Chan;Boo, Chang-Jin;Kim, Se-Ho;Jwa, Chong-Keun;Oh, Seong-Bo;Ko, Bong-Woon;Kim, Moon-Chan;Kim, Yong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2619-2621
    • /
    • 2005
  • Electrical resistance tomography(ERT) maps resistivity values of the soil subsurface and characterizes buried objects. The characterization includes location, size, and resistivity of buried objects. In this paper, Gauss-Newton and truncated least squares(TLS) are presented for the solution of the ERT image reconstruction. Computer simulations show that the spatial resolution of the reconstructed images by the TLS approach is improved as compared to that obtained by the Gauss-Newton method.

  • PDF

A study of the effect of the temperature on the As Te Ge Si amorphous semiconductor (As Te Ge Si 무정형 반도체의 온도영향)

  • 박창엽
    • 전기의세계
    • /
    • v.23 no.6
    • /
    • pp.49-55
    • /
    • 1974
  • Amorphous semiconductor from As 30 Te 48 Ge 10 Si 12 was prepared, and studied electron microscopy, X-ray analysis and resistivity measurement. It's resistivity is 1.56*10$^{6}$ .ohm.-cm when small ampule is used for preparing sample it is found that no phase separation has occurced by electron microscopy, and that phase transition temperature is 232.deg. C by differential Thermal Analysis. The specimen showed threshold switching that the low resistance state occur at critical electric field and the resistance recover at low applied field. Critical electric field of the switching is 10$^{5}$ V/cm at room temperature. Threshold voltage secreace exponentially with increasing ambient temperature and at that each voltage resistance of the switching device increase exponentially. According to the series resistance and applied vottage current slope on the V-I curve is varied. When applied voltage is decreased after switching, the resistance of the switching device is increased. By this result the origin of the switching is the Joule's heating.

  • PDF