• 제목/요약/키워드: Electric pump

검색결과 375건 처리시간 0.025초

고온 우회가스 및 에어댐퍼 사용을 통한 히트펌프 건조기 승온단계 에너지 효율 향상을 위한 사이클 및 유동해석 연구 (A Study on Cycle and Flow Analysis for Improvement of Energy Efficiency of a Heat Pump Dryer with Hot Bypass Gas and Air Dampers During Warm-up Stage)

  • 박상준;황일선;이영림
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.3827-3834
    • /
    • 2012
  • 최근 많은 열에너지를 필요로 하는 열풍식 건조기 대신 에너지 효율이 높은 히트펌프 건조기가 제지, 섬유, 목재, 식품 등 다양한 분야에서 사용되고 있다. 본 논문에서는 냉동 농산물 건조 초기에 전기히터 사용을 최소화하여 에너지 효율을 높이고자, 압축기 출구 고온가스 우회 시스템에 대한 히트펌프 사이클 특성을 이론적으로 고찰하였다. 또한, 추가 열을 확보하기 위하여 외부공기 유입을 위한 댐퍼를 고려하였고 이의 최적화를 통해 에너지 효율 향상이 가능함을 보였다.

냉매과냉각에 의한 열펌프의 성능향상에 관한 연구 (Study on Performance of Heat Pump using a subcooled refrigerant)

  • 박승준
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.159-164
    • /
    • 2000
  • In this paper a new type refrigerant liquid subcooling system which adopts ice storage system is proposed. And the cycle characteristicso of a new system was investigated. Since this system subcools a refrigerant in the daytime using the ice storaged by electric power in the night it is high efficiency heat pump system which have the merit of ice storage system and possible to improve the performance of the heat pump. The running to storage the ie was carried out for 10 hours in the night and th evaporating temperature was set on $-5^{\circ}C.$ Subcooling operation stayed as 430^{\circ}C$ subcooling degree and perfomed till the water in the IST(Ice storage tank) was reached $12^{\circ}C$. The experimental result showed that a new system was superior to the existing refrigeration system generally. The total cooling capacity of a new system was about 11% higher than that of the existing refrigeration system. And the COP of a new system was improved by 22% compared to the existing refrigeration system.

  • PDF

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

LNG 고압펌프 운전유량 조절에 따른 공정운영 개선방안 연구 (A study on the improvement of process operation through the adjustment to the flow rate of LNG HP pump)

  • 김동혁;이정환;김호연;백영순
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.15-22
    • /
    • 2004
  • 본 연구는 LNG 기지 내 주요 프로세스 설비인 LNG 고압펌프의 운전유량 및 토출압력을 조절함으로서 공정운영 조건을 개선하기 위해 수행되었다. 공정 해석 시뮬레이터인 ASPEN PLUS를 사용한 고압펌프의 실제 운전 성능분석 및 천연가스 송출부하 분석을 통하여 계절별 적정 LNG 고압펌프 토출유량을 결정하였고 그 결과는 현장운전에 적용되었다. 이로 인하여 고압펌프 소모 전력비용을 낮출 수 있으며, LNG기지 내 운영 프로세스 압력을 감소 시켜 보다 안전적인 기지운영을 유도할 수 있었다.

  • PDF

무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구 (An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

7톤급 로켓엔진용 펌프 수류 성능시험 (Water Performance Test of Pumps for a 7 Ton Class Rocket Engine)

  • 홍순삼;김대진;최창호
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.89-95
    • /
    • 2015
  • 7톤급 로켓엔진용 산화제펌프와 연료펌프에 대하여 물을 매질로 하는 성능시험을 수행하였다. 펌프는 전기모터로 구동되었고 설계 및 탈설계 유량비 조건에서 펌프의 수력성능과 흡입성능이 측정되었다. 양정-유량 곡선, 효율-유량 곡선, 양정-캐비테이션수 곡선을 얻었다. 개발된 펌프는 펌프 양정과 효율의 수력성능에 관한 설계요구조건을 만족시킬 수 있음을 확인하였다. 또한 흡입성능에 관한 설계요구조건을 만족시킨다.

다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법 (Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment)

  • 장진현;정헌술
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

캡슐형 빙축열시스템에 대한 운전 시뮬레이션 및 에너지비용 분석 (Simulation and Energy Cost Calculation of Encapsulated Ice Storage System)

  • 이경호;주용진;최병윤;김상준
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.63-73
    • /
    • 1999
  • Ice storage systems are used to shift the peak load in day time into night time in summer. This paper describes a system simulation of partial ice storage system composed of an encapsulated ice storage tank, a screw compressor chiller, a heat exchanger, and a brine pump. For the system simulation, a one-dimensional model of ice storage tank is developed and validated by comparison with the performance data from measurements of an ice storage tank installed at a building. The control strategies considered in this study are chiller priority and storage priority being used commercially. The system is simulated with design cooling load of 600 RT peak load in design day and with off-design day cooling load, and the electric energy costs of the two control strategies for the same system size are compared. As a result of calculation, the energy consumption in a week for storage priority is higher than that for chiller priority control. However due to lower cost of night electric charge rate, energy cost for storage priority control is lower than chiller priority.

  • PDF

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

빌딩 설비의 실무 포인트(1) - 펌프 편

  • 대한전기협회
    • 전기저널
    • /
    • 1호통권49호
    • /
    • pp.77-78
    • /
    • 1981
  • 요즘은 자동화가 발달됨에 따라 모든 산업에 있어서 고도의 기술과 폭넓은 지식이 요구되게 되었다. 이러한 세대의 요구에 대응하기 위하여는 전기기술자라 할지라도 전기지식 뿐만 아니라 다른 분야의 지식도 어느 정도 알아 두어야 할 필요가 있다. 특히 기계와는 밀접한 관계에 있으므로 더할 나위가 없다. 그래서 빌딩에 시설되어 있는 기계설비중 비교적 중요하게 다루어지는 펌프(Pump), 보일러(Boiler), 냉동기(冷凍機), 공기조절기(空氣調節機)등에 대해서 그 기초적 지식과 실무요점에 관하여 설명하기로 한다.

  • PDF