• 제목/요약/키워드: Electric pump

검색결과 375건 처리시간 0.025초

Steering Wheel Torque Control of Electric Power Steering by PD-Control

  • Pang, Du-Yeol;Jang, Bong-Choon;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1366-1370
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering (EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in the paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can't satisfy both requirements.

  • PDF

재귀 베이시안 추정을 이용한 회전기기 진단 (Diagnostics of Rotating Machinery using Recursive Bayesian Estimation)

  • Oh, Joon-Seok;Sohn, Seok-Man;Kim, Hee-Soo;Lee, Seung-Cheol;Bae, Yong-Chae
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권1호
    • /
    • pp.49-52
    • /
    • 2020
  • Since power plant is an important system to provide electricity, it is necessary to monitor it in order to operate safely. Much information related with machine diagnosis exists in written form instead of digital data. So, it causes difficulties of analyzing and finding solutions. Rulebased expert system can provide flexible and effective solutions to users. In this paper, Recursive Bayesian Estimation is applied in order to increase accuracy of solutions.

A Method for Determining Appropriate Maintenance Intervals of Equipments in Thermal Power Stations

  • Nakamura, Masatoshi;Katafuchi, Tatsuro;Hatazaki, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.312-317
    • /
    • 1998
  • Reliable maintenance scheduling of main equipments is a crucial problem in thermal power stations in order to skirt overall losses of power generation resulted from severe failures of the equipments. A reasonable method was proposed to determine the maintenance scheduling of whole pump system in thermal power stations in order to reduce the maintenance cost by keeping the present avail-ability of the pump system throughout the operation. The dimensional reduction method was used to solve problems encountered due to few data which involved many operational factors in failure rate of pumps. The problem of bandlimited nature of data with time was solved by extrapolating future failures from presently available actual data with an aid of Weibull distribution. The results of the analysis identified the most suitable maintenance intervals of each pump type accordingly and hence reduce the cost of unnecessary maintenance with an acceptable range in the overall system availability.

  • PDF

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.

수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구 (Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV))

  • 이순용;서원범;임지선;최재훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Effects of the Geometry of Components Attached to the Drain Valve on the Performance of Water Hammer Pumps

  • Saito, Sumio;Takahashi, Masaaki;Nagata, Yoshimi;Dejima, Keita
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권4호
    • /
    • pp.367-374
    • /
    • 2011
  • Water hammer pumps can effectively use the water hammer phenomenon in long-distance pipeline networks that include pumps and allow fluid transport without drive sources, such as electric motors. The results of experiments that examined the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. In addition, a paper has also been published analyzing the water hammer phenomenon numerically by using the characteristic curve method for comparison with experimental results. However, these conventional studies have not fully evaluated the pump performance in terms of pump head and flow rate, common measures indicating the performance of pumps. Therefore, as a first stage for the understanding of water hammer pump performance in comparison with the characteristics of typical turbo pumps, the previous paper experimentally examined how the hydrodynamic characteristics were affected by the inner diameter ratio of the drive and lifting pipes, the form of the air chamber, and the angle of the drive pipe. To understand the behavior of the components attached to the valve chamber and the air chamber that affects the performance of water hammer pumps, the previous study also determined the relationship between the water hammer pump performance and temporal changes in valve chamber and air chamber pressures according to the air chamber capacity. For the geometry of components attached to the drain valve, which is another major component of water hammer pumps, this study experimentally examines how the water hammer pump performance is affected by the length of the spring and the angle of the drain pipe.

고성능 히트펌프 해석모델 개발 연구 (Development of Analysis Model for High-Performance Heat Pump)

  • 임상식;김기범;박성영
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6053-6059
    • /
    • 2013
  • 히트 펌프는 지열이나 태양열 등의 신재생 에너지를 이용하거나 기타 폐열을 재활용하여 기존의 전기 히팅 난방 시스템들보다 에너지 소비율을 낮출 수 있다는 장점으로 인해 그린 에너지 시스템으로써 주목을 받아 왔다. 고효율 히트펌프 시스템 설계를 위한 연구는 오랫동안 지속되어 왔지만, 각각의 구성요소가 유기적이며, 변화에 유연한 해석모델은 존재하지 않는다. 따라서 본 연구에서는 공기 열 원식 히트 펌프를 AMESim Software를 이용해 구성하였다. 독자적으로 개발한 스크롤 압축기 해석 모델을 히트펌프 시스템에 조합함으로써 효율 향상 방안을 모색하였으며, 실험 데이터를 이용하여 개발한 해석모델을 검증하였다. 실험 데이터와 개발한 해석 모델을 이용하여 예측된 데이터를 비교한 결과 최대 오차가 10% 이내로 두 데이터가 잘 일치하였다. 본 연구에서 개발한 히트펌프 해석모델은 향후 시제품을 개발하고 효율 향상을 위한 연구 등에 유용하게 사용될 것으로 사료된다.

공기열원 및 수열원을 이용한 열펌프 시스템의 성능특성에 관한 연구 (A study on the comparison of the performance of a heat pump system with air and water heat sources)

  • 고원빈;박윤철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.563-568
    • /
    • 2016
  • 본 연구는 연료전지 자동차용 공기조화기의 난방성능평가를 위하여 기존의 전반적인 히트펌프 시스템 중 공기열원 히트펌프 시스템의 증발기를 판형열교환기로 교체하여 시스템에 흐르는 냉매와 연료전지 스택 폐열을 직접 열교환이 가능한 수열원 이용이 가능한 난방시스템의 성능실험을 수행하였다. 실험결과에서 압축기의 회전수가 높을수록 소비동력이 증가하였다. 공기열원 이용방식의 경우 압축기 회전수가 1,200rpm이고 EEV개도가 25%인 경우 $COP_h$가 2.03으로 가장 높게 나타났고, 같은 압축기의 회전수에서 수열원 시스템은 EEV개도가 75% 및 스택 폐열의 온도가 $50^{\circ}C$인 경우 $COP_h$가 9.42로 가장 높게 나타났다.

열펌프를 이용한 슬러리 돈분뇨 증발건조처리시스템 개발 (Development of Heat Pump Use Slurry Pig Manure Evaporation Drying System)

  • 김현태;최홍림
    • Journal of Biosystems Engineering
    • /
    • 제30권1호
    • /
    • pp.32-37
    • /
    • 2005
  • This study was conducted the slurry pig manure treatment by condensation drying of liquid from the slurry manure with a heat-pump and electric heater combined with air flow channel system. The system was designed as liquid and solid matters separation of slurry manure, and it can doing continuous input of slurry manure from a pig house, and it can operated year round use for pig farms. The separation of liquid and solid matters from slurry manure needed the prevention of solid accumulation in the system. The system was designed as closed space from outside air space for maximized evaporation of liquid and the condensation of liquid from slurry manure. The system can be operated the pig slurry manure treatment regardless of seasons in a yew. The separated evaporation water from the pig slurry manure by the heat-pump was satisfactorily pure water that can be used as washing water in livestock farms. The system can applicate to about 100 heads of pig, and the proper area of evaporation plate system was considered around $10\;m^2$. The input electrical energy of about 15 kWh which the cost equal to 250,000 won per month.

펌프용 소형 BLDC 모터의 원가절감을 고려한 회전자 최적화 설계 (Optimized Design of Rotor Considering Cost-Reduction of Small BLDC Motor for the Water Pump)

  • 김회천;정태욱
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.495-501
    • /
    • 2013
  • In the present study, a BLDC motor for a pump in which a neodymium PM is replaced with a Ferrite PM has been developed in preparation for the cost increase and to ensure the stability of the resource supply. One of the currently used motors for pumps is a BLDC motor having an interior PM wherein a rare-earth PM is adopted. However, a BLDC motor for a pump is designed to have large airgap because of the use of a waterproof insulator according to its structural characteristics, and therefore, a SPM structure is suitable. Hence, an SPM BLDC motor in which a Ferrite PM is used is designed. Nevertheless, the use of Ferrite instead of rare-earth materials causes a deterioration in the performance of the electric motor, such as a decrease in the BEMF and the maximum power of the motor and the irreversible demagnetization of the PM. In order to mitigate such disadvantages, an optimized design of the BLDC motor is developed by changing each design parameter and by improving the electromagnetism structure.