• 제목/요약/키워드: Electric propulsion ship

검색결과 109건 처리시간 0.024초

선박용 전기추진시스템의 단락상정사례의 전력특성 분석 (Power Characteristic Analysis of Assumed Short Circuit Instance of Electric Ship Propulsion System)

  • 전원;왕용필;정종화;류승각;정상용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.323-329
    • /
    • 2008
  • This paper deals with modeling and characteristic analysis of a large-powered electric ship propulsion system. Particularly, system modeling in accordance with the required shipping performance, building-up the equivalent circuit and the power analysis based on load flow have been performed. In addition, abnormal operating condition of short-circuit network is considered for investigating the safety of system components under the over-load condition. Furthermore, protective device like circuit breaker has been specified in order to make the entire system operate normally in case of short-circuit emergency.

전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용 (Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships)

  • 구현근;서혜림;김장목
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.

A Study on the Noise and Vibration Analysis of 200kW PMSM for Electric Propulsion Ship

  • Cho, Yang-Uk;Kang, Gyu-Hong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.389-393
    • /
    • 2014
  • This paper presents one of the methods for design to reduce the noise and vibration of 200kW motor for electric propulsion ship. One of the important factors affecting vibration of the motor is the resonance. The natural frequency and natural mode of the 200kW motor is analyzed by using FEM tool and impact test equipment to avoid the resonance. Also, compare FEM result with impact test result to make a reliable FE model of 200kW motor. In order to find out the effect of the noise and vibration of the motor by electromagnetic excitation force, conduct electromagnetic-structure coupled analysis. These characteristics are much useful to design 200kW motor for electric propulsion ship.

직접토크제어에 의한 전기추진선박의 추진전동기 속도 및 토크제어에 관한 연구 (A Study on the Speed and Torque Control of Propulsion Motor for Electric Propulsion Ship by Direct Torque Control)

  • 김종수;오세진;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.946-951
    • /
    • 2009
  • An induction motor based on DTC(Direct Torque Control) is being increasingly used in various industrial applications. DTC offers faster torque response and better speed control with lesser hardware and processing costs in compared with other controlled drives. This study was to evaluate performance of DTC for induction motor of electric propulsion ship. The simulation results indicated good speed and torque response from the low to middle speed range. Also, DTC has advantages such as the independency on motor parameter.

A Study on Application of Electric Propulsion System using AFE Rectifier for Small Coastal Vessels

  • Jeon, Hyeonmin;Kim, Seongwan;Kim, Jongsu
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.373-380
    • /
    • 2018
  • The small coastal vessel registered in Korea, small coastal vessels with a gross tonnage of 10 tons or less account for 94.6 % and among them, aged vessels over 16 years age indicate 40.6 %. In order to reduce GHG emissions from small coast vessels, discussions are underway to replace aging ships' propulsion units with eco - friendly propulsion facilities, and the electric propulsion ship is emerging as one of the measures. The electric propulsion system using the DFE rectifier, which was applied in the conventional large commercial vessel, was effective in reducing the harmonics and improving the DC output voltage of the DC link stage, but it occupied a large volume and caused an increase in the overall system price. Therefore, in this paper, we propose an electric propulsion system using AFE rectifier with a small volume of system that can be applied to a small coastal vessel. In order to analyze the effectiveness of the overall system, the load profile was applied to obtain accurate and rapid speed tracking performance of the propulsion motor affected by the speed load. In addition, the power factor and total harmonic distortion factor of the voltage and current on the improved power output side are derived through simulation.

Telegraph 제어기 검증을 위한 HILS 테스트 모델링 및 시뮬레이션 연구 (A Study on HILS Test Modeling and Simulation for Telegraph Controller Verification)

  • 김성동;김남호
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1612-1618
    • /
    • 2021
  • Telegraph 제어기는 선박의 속도제어에 사용되는 장치로 선원의 안전에 매우 직접적인 영향이 미치는 기자재이다. 이에 선주는 Telegraph 제어기에 대해 매우 높은 신뢰성을 요구하고 있으며, 선급에서는 신뢰성 검증을 위한 방법으로 HILS(hardware in loop system)테스트를 도입하고 있는 추세이다. 이에, 본 논문에서는 Telegraph 제어기의 HILS 테스트를 수행하기 위한, 전기추진선박을 모델링하였다. 모델링을 위해, 전기추진터그보트의 사양을 정의하고, 배터리, 추진전동기, 선박모델 파트 등에 대해 모델링 하였다. 또한, 다양한 운전시나리오를 정의하고 이에 따라 Telegraph 제어기를 모델링하였다. 마지막으로 통합 모델에 대한 결과를 시뮬레이션을 통해 확인하였다.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • 해양환경안전학회지
    • /
    • 제28권3호
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

이상상태 발생 시 선박용 추진전동기 및 추진축의 과도상태 해석 (Transient analysis of marine propulsion motor and shaft under abnormal conditions)

  • 오세진;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.34-38
    • /
    • 2016
  • 최근 추진 전동기가 장착된 전기추진 시스템의 대형 크루즈 선박 및 상선이 점차 증가하는 추세이다. 이러한 전기추진 선박에서 추진 전동기에 이상상태가 발생하면 전동기 자체 및 프로펠러축에 심각한 손상이 발생할 수 있다. 하지만 전기추진 선박에 사용되는 추진 전동기의 정상상태 운전 및 이상상태 시의 분석에 관한 연구는 찾아보기 힘들고 관련 정보도 매우 부족한 실정이다. 본 연구에서는 전기추진 선박용 추진 시스템의 수학적 모델을 제시하고 이를 바탕으로 전기적인 이상상태 발생 시에 추진 전동기 및 프로펠러축에 발생하는 과도현상을 해석하고자 한다. 본 연구에 사용된 전기추진 선박용 전동기는 동기전동기이며 소프트웨어인 Matlab을 사용하여 모의실험을 수행하였으며, 정격으로 운전 중인 추진 전동기에 이상상태가 발생하였을 경우 과도전류는 1상 접지 상태에서 가장 크게 발생하며 추진축에 발생하는 과도토크는 3상 접지 및 2상 접지 상태에서 상대적으로 크게 발생하였고, 정격으로 운전 중 추진 전동기의 여자전력이 차단될 경우에도 과도전류와 과도토크가 비교적 크게 발생함을 확인하였다.

어선용 하이브리드 추진시스템에 관한 연구 (A Study on the Hybrid Propulsion System for Fishing Boat)

  • 오진석;조관준;박충환;함연재;곽준호;이지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.677-683
    • /
    • 2008
  • The electric propulsion system us closely related with the economical efficiency of ship operation. Fuel efficiency is mainly decided by propulsion system such as diesel engine, propulsion motor and steam turbine. The hybrid propulsion system for fishing boat consists of diesel engine and battery as propulsion power source. This paper is to design battery capacity according to power consumption with ship operation condition, and to test the power consumption of model ship in the circulating water channel. As a result. it can be known that the optimum ship operation condition affects the fuel efficiency.