• Title/Summary/Keyword: Electric power utility tunnel

Search Result 8, Processing Time 0.031 seconds

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

Development of Monitoring and Control System of Utility-Pipe Conduit (Power Tunnel) using PLC

  • Lee, Tae-Young;Park, Byung-Seok;Ju, Seong-Ho;You, Dong-Hee;Lim, Yong-Hoon;Song, Seok-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.116-119
    • /
    • 2004
  • The existing monitoring and control systems of utility-pipe conduit (power tunnel, cable tunnel etc) have established communication lines using optical fiber, leaky coaxial cable (LCX), and several kinds of control cable. Due to the properties of the used media, the cost of equipment is considerably high and the maintenance of the system is difficult. Also, the term of carrying out is long so that the extension of the system is in difficulty. Now it is desirable to adopt Power Line Communication (hereinafter, PLC) technology in the monitoring and control systems and use the existing low-voltage power-line for lamplight as communication line. This will lead the reduction of the construction cost and the easy maintenance of the system. In this paper, we research the characteristics of PLC in conduit, design and manufacture the field test system, and analyze the performance of the system by field test. Then, we introduce the reliable monitoring and control system of utility-pipe conduit using PLC.

  • PDF

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.

Development of Monitoring and Control System of Utility-Pipe Conduit(Power Tunnel) using PLC (전력선 통신을 이용한 지하공동구 종합감시제어 시스템 개발)

  • Ju Seong-Ho;Lee Tae-Young;Park Byung-Seok;Lim Yong-Hoon;You Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.728-732
    • /
    • 2004
  • 기존의 지하 공동구 감시 시스템은 광케이블, 누설 동축케이블(LCX), 각종 제어케이블을 사용하여 통신 선로를 구축하기 때문에 시설비가 대단히 고가이며, 여러 가지 통신선로의 이용에 따른 유지보수가 어렵고 시공기간이 길어 시설 확대에 어려움이 있었다. 따라서 통신케이블의 설치 없이 기존에 설치된 공동구의 전등용 저압 전력선을 통신선로로 그대로 이용할 수 있는 전력선 통신 기술을 적용하여 유지보수가 용이한 저비용의 지하 공동구 감시제어시스템을 개발하는 것이 바람직하다. 본 논문에서는 공동구에서의 전력선 통신의 특성을 조사, 시험시스템 설계${\cdot}$제작, 현장실증시험을 통한 성능시험 및 분석을 수행하여 전력선 통신을 적용한 안정적인 공동구 감시제어 시스템을 제안하고자 한다.

  • PDF

A Study on Seismic Liquefaction Risk Map of Electric Power Utility Tunnel in South-East Korea (국내 동남권 지역의 전력구 지반에 대한 지진시 액상화 위험도 작성 연구)

  • Choi, Jae-soon;Park, Inn-Joon;Hwang, Kyengmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.13-19
    • /
    • 2018
  • Following the 2016 Gyeongju earthquake, the Pohang Earthquake occurred in 2017, and the south-east region in Korea is under the threat of an earthquake. Especially, in the Pohang Earthquake, the liquefaction phenomenon occurred in the sedimentation area of the coast, and preparation of countermeasures is very important. The soil liquefaction can affect the underground facilities directly as well as various structures on the ground. Therefore, it is necessary to identify the liquefaction risk of facilities and the structures against the possible earthquakes and to prepare countermeasures to minimize them. In this study, we investigated the seismic liquefaction risk about the electric power utility tunnels in the southeast area where the earthquake occurred in Korea recently. In the analysis of seismic liquefaction risk, the earthquake with return period 1000 years and liquefaction potential index are used. The liquefaction risk analysis was conducted in two stages. In the first stage, the liquefaction risk was analyzed by calculating the liquefaction potential index using the ground survey data of the location of electric power utility tunnels in the southeast region. At that time, the seismic amplification in soil layer was considered by soil amplification factor according to the soil classification. In the second stage, the liquefaction risk analysis based on the site response analyses inputted 3 earthquake records were performed for the locations determined to be dangerous from the first step analysis, and the final liquefaction potential index was recalculated. In the analysis, the site investigation data were used from the National Geotechnical Information DB Center. Finally, it can be found that the proposed two stage assessments for liquefaction risk that the macro assessment of liquefaction risk for the underground facilities including the electric power utility tunnel in Korea is carried out at the first stage, and the second risk assessment is performed again with site response analysis for the dangerous regions of the first stage assessment is reasonable and effective.

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

Relationship between brittleness index of hard rocks and TBM penetration rates (경암의 취성도와 TBM 순굴진율간의 관계)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Kyoung-Yul;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.611-634
    • /
    • 2017
  • In rapid urbanization, demand for utility tunnel increases more, and tunnel boring machine (TBM) has been used widely. Prediction of TBM penetration rate is important for proper estimation of construction period and cost. Although there are several methods, such as NTNU model and CSM model that require many input parameters, fundamental understanding on correlations between rock properties and TBM penetration rate is critical. In this study, we explored the brittleness indices of hard rocks according to various definitions, and the correlations between the brittleness indices and the TBM penentration rates.