• Title/Summary/Keyword: Electric power loss

Search Result 596, Processing Time 0.027 seconds

Design and Control of an Optimized Battery Charger for an xEV Based on Photovoltaic Power Systems

  • Kim, Dong-Hee;Cheo, Gyu-Yeong;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1602-1613
    • /
    • 2014
  • The continuous growth of electric vehicles has caused electric power shortages in conventional utilities owing to the charging of electric-vehicle batteries. In order to increase the capacity of these utilities, photovoltaic systems may be an appropriate solution because of their benefits. However, a large amount of loss is generated in a conventional charging structure using photovoltaic sources owing to the many power conversion processes. This paper describes a simple integrated battery charger that utilizes a PV generation system. Moreover, the system control algorithm is deduced by analyzing the operation modes in order to control the proposed integrated system. The proposed system and algorithm are verified by a 3.3-kW prototype, resulting in an increase in the efficiency of approximately 7% to 15% compared with the conventional system. And, to examine the feasibility of the proposed system, the simulation for multi-charger with various conditions are progressed.

Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length (다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산)

  • Lee, Ji-Kwang;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Particle Loss Reduction Technique Using Dielectrophoresis in Microfluidic Channel (유전영동을 이용한 미세유체채널 내부의 입자 손실 저감 기술)

  • Kang, Dong-Hyun;Kim, Min-Gu;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.357-362
    • /
    • 2011
  • This paper demonstrates a novel electrodynamic technique to remove particles from the wall of microchannels. Dielectrohporesis(DEP) is generated by applying alternating electric potentials to the interdigitated electrodes integrated at the bottom of the micro-channel. The proposed technique is applied to a general microfluidic channel as a feasibility test. To examine the wall loss reduction efficiency, 10 ${\mu}m$ diameter Polystyrene latexes(PSL) were supplied to the inlet of the device. Then, the concentration of collected particles through devices was measured. In the experiment for 10 ${\mu}m$ diameter PSL particles, the concentration of the injected particles was $174.25{\times}10^4$ particles/ml. However, the concentration of collected particles at the outlet was $52.25{\times}10^4$ particles/ml. Only 30 % of particles had arrived at the outlet and 70 % of particles had adhered to the wall of the microfluidic channel. By applying alternating electric potentials from 0 to 20 $V_{pp}$ at 3 MHz, the concentration of injected particles was 135.00${\times}10^4$ particles/ml, the concentration of collected particles was increased as $105.25{\times}10^4$ particles/ml at 20 $V_{pp}$ at the outlet. When the electric potential was 20 $V_{pp}$, the particle loss was decreased by 39 % (initial loss: 70 %, loss at 20 Vpp: 31 %) with 10 ${\mu}m$ particle. The particle loss was decreased along to the incensement of electric potentials and the enlargement of the diameter of particles. According to these measured results, it was confirmed that the proposal of using DEP technique could be a good candidate for particle loss reduction in micro-particle processing chip application. Moreover, it is expected that the proposed technique could enhance performance of microfluidic and biochip devices.

Analysis of the impact of the marginal loss factor change caused by the reference node change on the electric power trading in Korean Wholesale Electricity Market (도매경쟁 전력시장에서 기준 모선의 위치에 따른 한계손실계수의 변동이 전력거래에 미치는 영향 분석)

  • Hook, Kyung-Soo;Moon, Young-Hwan;Oh, Tae-Kyoo;Ok, Ki-Youl;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.262-264
    • /
    • 2002
  • This paper describes the proposed application of MLF(marginal loss factor) in korean wholesale electricity market in accordance with the proposal of wholesale market design, and presents the analysis result of the impact of MLF change on the electric power trading when the reference node for the MLF calculation is changed.

  • PDF

Impact Analysis of Wind Power on Power System Reliability with Electric Vehicles (풍력발전과 전기자동차가 전력계통의 신뢰도에 미치는 영향 평가)

  • Kim, Dam;Park, Hyeongon;Kwon, Hungyu;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1535-1542
    • /
    • 2015
  • An increasing number of electric vehicles (EVs) in power system affects its reliability in various aspects. Especially under high EV penetration level, new generating units are required to satisfy system's adequacy criterion. Wind power generation is expected to take the major portion of the new units due to environmental and economic issues. In this paper, the system reliability is analyzed using Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS) under each and both cases of increasing wind power generation and EVs. A probabilistic multi-state modeling method of wind turbine generator under various power output for adequate reliability evaluation is presented as well. EVs are modeled as loads under charging algorithm with Time-Of-Use (TOU) rates in order to incorporate EVs into hour-to-hour yearly load curve. With the expected load curve, the impact of EVs on the system adequacy is analyzed. Simulations show the reliability evaluation of increasing wind power capacity and number of EVs. With this method, system operator becomes capable of measuring appropriate wind power capacity to meet system reliability standard.

A Study on Development of Online Wide Area SynchroPhasor and Voltage Stability Monitoring System using Satellite Network (위성망을 이용한 온라인 광역 동기위상 및 전압안정도 감시 시스템 개발에 관한 연구)

  • Kwon, Dae-Yun;Kim, Tae-Jin;Yoon, Sang-Hyun;Jung, Gwang-Gyun;Oh, Gyu-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.273-274
    • /
    • 2008
  • Recently, the most wide-area blackout in North America, Canada and Europe had shown us indirectly the importance of Wide-Area Power System Protection and had influence on the direction of domestic electric power industry. After reorganization of the electric power industry in 2001, market incentives controls the power generation, transmission and distribution rather than stability of power grid, and moreover it produce bad results like inefficient facility management and too much competition. In addition, we can easily predict the massive loss of social and economic when the wide-area outage occurs by north direction load flow which is a pending problems of domestic power system and in a changed industry likes hi-tech manufacture and information technology industries. This paper introduces the development of infra systems for prevent wide-area blackout in situations of the power system operations.

  • PDF

Development of simulator by induced contact loss phenomenon for high-speed train operation (고속전철 주행에 따른 이선현상 모의 시뮬레이터 개발)

  • Kim, Jae-Moon;Kim, Yang-Soo;Kim, Chul-Soo;Chang, Chin-Young;Kim, Youn-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.499-503
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A Feasibility Study on DC Microgrids Considering Energy Efficiency (에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토)

  • Yu, Cheol-Hee;Chung, Il-Yop;Hong, Sung-Soo;Chae, Woo-Kyu;Kim, Ju-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.