Through machine learning-based load prediction, it is possible to prevent excessive power generation or unnecessary economic investment by estimating the appropriate amount of facility investment in consideration of the load that will increase in the future or providing basic data for policy establishment to distribute the maximum load. However, in order to secure the reliability of the developed load prediction model in the field, the performance comparison verification between the distribution line load prediction models must be preceded, but a comparative performance verification system between the distribution line load prediction models has not yet been established. As a result, it is not possible to accurately determine the performance excellence of the load prediction model because it is not possible to easily determine the likelihood between the load prediction models. In this paper, we developed a reliability verification system for load prediction models including a method of comparing and verifying the performance reliability between machine learning-based load prediction models that were not previously considered, verification process, and verification result visualization methods. Through the developed load prediction model reliability verification system, the objectivity of the load prediction model performance verification can be improved, and the field application utilization of an excellent load prediction model can be increased.
Journal of Korean Society of Industrial and Systems Engineering
/
v.35
no.1
/
pp.24-31
/
2012
This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.
This paper deals with improvements to the special protection schemes (SPS) which have been applied to the low probability and high impact contingencies in the Korea Electric Power Corporation (KEPCO) system since 2004. Among them, the SPS for voltage instability in the Seoul metropolitan area is considered in this paper, and is a form of event-based undervoltage load shedding with a single-step scheme. Simulation results based upon a recent event that occurred on 765kV lines show that the current setting values of the SPS have to be revised and enhanced. In addition, by applying response-based multi-step undervoltage load shedding (UVLS) schemes to severe contingencies in the system, more effective results than those of the existing single-step SPS can be obtained. Centralized and distributed UVLS schemes are considered in the simulation. ULTC-based load recovery models and over excitation limiters (OXL) for the KEPCO system are also included in the long-term voltage instability studies.
For effective distribution planning and operation, we need a reliable estimation of operation capacity. But it is difficult to ensure reliability due to the low accuracy of section load data, which is used as a basis in estimating the operation capacity. This paper discusses how to improve the accuracy of section load data by analyzing the existing method of estimating the section load, using statistical techniques to adjust the acquired data, and using the section load estimation algorithm to estimate the section load based on the adjusted data.
In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.2
/
pp.253-256
/
2016
In this paper, the power system with electric vehicles is analyzed considering the mobility and diffusion rate of electric vehicles in the smart grid environment. In the previous studies, load modeling and load composition rates have been researched and the results are applied to develop a new load model to explain the mobility of electric vehicles which could affect on the power system status such as power flow and stability. The results would be utilized to research and develop power system analysis methods considering movable charging characteristics of electric vehicles including movable discharging characteristics which could be affected by the diffusion progress of electric vehicles.
This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.2
/
pp.315-323
/
2015
Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.
Park, Si-Woo;Kim, Ki-Dong;Yoon, Yong-Beum;Choo, Jin-Boo
Proceedings of the KIEE Conference
/
1999.07c
/
pp.1478-1480
/
1999
The accurate analysis of power system requires detailed load model. There are two basic approaches in modeling the load characteristics. One is to directly measure the voltage and frequency sensitivity of the load P and Q at substations and feeders. The other is to build up a composite load model from each load component. Each of these methods has advantages and disadvantages. This paper presents load composition for KEPCO's power system to develop load models by the component-based load modeling.
The Transactions of The Korean Institute of Electrical Engineers
/
v.63
no.9
/
pp.1186-1191
/
2014
Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.