• 제목/요약/키워드: Electric power grid

검색결과 725건 처리시간 0.021초

스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구 (A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment)

  • 최진영;박은성
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법 (Control Strategies of Mobility Charging Systems Using PV-ESS Systems)

  • 김대원;이현민;박성민
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

주택 및 사무용 빌딩 내 전기기기의 전력 수요 패턴 분석 (Power demand pattern analysis for electric appliances in residential and commercial building)

  • 노성준;이순정;이상우;김광호
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.9-15
    • /
    • 2010
  • Recently, Smart Grid is a emerging topic in power and communication industry. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. In order to successful implementation of Smart Grid, energy management function will be the key factor that coordinates and optimally controls the various loads according to the operating condition and environments, and the load patterns in residential and commercial building will be required as fundamental element for load management. In this study, we collects many types of energy usage data of electric appliances, analyze their load curves, and make the general load patterns for electrical appliance.

  • PDF

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

Integrated Voltage and Power Flow Management Considering the Cost of Opera in Active Distribution Networks

  • Xu, Tao;Guo, Lingxu;Wei, Wei;Wang, Xiaoxue;Wang, Chengshan;Lin, Jun;Li, Tianchu
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.274-284
    • /
    • 2016
  • The increasing penetration of distributed energy resources on the distribution networks have brought a number of technical impacts where voltage and thermal variations have been identified as the dominant effects. Active network management in distribution networks aims to integrate distributed energy resources with flexible network management so that distributed energy resources are organized to make better use of existing capacity and infrastructure. This paper propose active solutions which aims to solve the voltage and thermal issues in a distributed manner utilizing a collaborative approach. The proposed algorithms have been fully tested on a distribution network with distributed generation units.

중앙제어기반 전기자동차 충전시스템의 에너지관리 알고리즘에 관한 연구 (A Study on the Power Management Algorithm of Centralized Electric Vehicle Charging System)

  • 도반콴;이성준;이재덕;배정효
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.566-571
    • /
    • 2011
  • As Plug-in Hybrid Vehicle and Electric Vehicle (PHEV/EV) take a greater share in the personal automobile market, their high penetration levels may bring potential challenges to electric utility especially at the distribution level. Thus, there is a need for the flexible charging management strategy to compromise the benefits of both PHEV/EV owners and power grid side. There are many different management methods that depend on the objective function and the constraints caused by the system. In this paper, the schema and dispatching schedule of centralized PHEV/EV charging spot network are analyzed. Also, we proposed and compared three power allocation strategies for centralized charging spot. The first strategy aims to maximize state of vehicles at plug-out time, the rest methods are equalized allocation and prioritized allocation based on vehicles SoC. The simulation results show that each run of the optimized algorithms can produce the satisfactory solutions to response properly the requirement from PHEV/EV customers.

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.