• Title/Summary/Keyword: Electric potential distribution

Search Result 211, Processing Time 0.041 seconds

The Optimal Design Method of Placing the Winding wire in Potential Transformer (계기용변압기의 권선 배치 최적화 설계 기법)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.261-262
    • /
    • 2016
  • 본 논문에서는 계기용변압기(Potential Transformer, PT) 1차권선의 절연내력을 향상시키기 위하여 전위분포가 일정하게 되도록 권선 배치를 최적화하는 프로그램을 작성하여 반복 분석하였다. 우선 기존의 권선 배치에 대한 국소점의 전계분포를 고찰하여 전계의 최대치를 구한 후, 권선 배치를 자동화된 순환 계산형 시뮬레이터를 제작하여 적절한 분포로 교정하고 최초의 기대 함수치를 극소화하는 형상을 반복 추적하는 알고리즘을 이용하였다.

  • PDF

Computer simulation of electric field distribution in FALC process (FALC 공정에서의 전계 분포 전산모사)

  • 정찬엽;최덕균;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The crystallization behavior of amorphous silicon is affected by direction and intensity of electric field in FALC(Field-Aided Lateral Crystallization). Electric field was calculated in a simplified model using conductivity data of Mo, a-Si, $SiO_2$and boundary conditions for electric potential at the electrodes. The magnitude of electric field intensity in each corner of cathode was much larger than that in the center of patterns, and the electric field direction was 50~60 degree outside to cathode. And electric field intensity at a relatively small pattern was larger than that of a large pattern.

Three-Dimensional Finite Element Analysis of a Vacuum Interrupter (진공 인터럽터의 3차원 유한요소해석)

  • Choi, Seung-Kil;Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.693-698
    • /
    • 1999
  • Vacuum interrupters have a special asymmetric electrode structure to generate an magnetic field and consequently to increase the interrupting ability. Accordingly 2-dimensional analysis has a large analysis error because radial flux can not be considered. In this paper, in order to analyse the electric field distribution of a vacuum interrupter with arc shield more accurately, 3-dimensional finite element method(FEM) is used. The induced electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results also show that the induced potential of shield causes electric field distortion so that the maximum value of electric field in a vacuum interrupter with arc shield is higher than that without one.

  • PDF

The Analysis of Axisymmetric Field Problem by C-1 FEM (C-1 유한요소법에 의한 축대칭장 문제의 해석)

  • Jang, I.K.;Kwak, D.S.;Shin, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.21-23
    • /
    • 1999
  • In this paper, the analysis of the electric field in the chamber of high voltage $SF_6$ GCB(Gas Circuit Breaker) is presented by using C-1 FEM. For this purpose, pre-processing program and post-processing program were developed for axisymmetirc 3 dimensional analysis and the electric field in cylindric chamber was analyzed. Important problem is that electric analysis must be considered coronal due to break-down of $SF_6$ when it is cutted off. To solve this problem, a procedure is needed to verify that the solution of Poisson's equation for scalar potential satisfy charge continuos condition because of using first order element os not satisfy the electric continuous condition, C-1 FEM is introduce to obtain electirc potential and electric field at the same time. Analysis of the distribution of electric field on model was done. It is confirmed that the developed program in this paper applicable to design and to analyze of characteristics in total program as electric characteristics analysis routine.

  • PDF

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

Electric potential redistribution due to time-dependent creep in thick-walled FGPM cylinder based on Mendelson method of successive approximation

  • Kheirkhah, S.;Loghman, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1167-1182
    • /
    • 2015
  • In this study, the stresses and electric potential redistributions of a cylinder made from functionally graded piezoelectric material (FGPM) are investigated. All the mechanical, thermal and piezoelectric properties are modeled as power-law distribution of volume fraction. Using the coupled electro-thermo-mechanical relations, strain-displacement relations, Maxwell and equilibrium equations are obtained including the time dependent creep strains. Creep strains are time, temperature and stress dependent, the closed form solution cannot be found for this constitutive differential equation. A semi-analytical method in conjunction with the Mendelson method of successive approximation is therefore proposed for this analysis. Similar to the radial stress histories, electric potentials increase with time, because the latter is induced by the former during creep deformation of the cylinder, justifying industrial application of such a material as efficient actuators and sensors.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

Cross Sectional Thermal and Electric Potential Imaging of an Operating MOSFET (작동중인 모스 전계 효과 트랜지스터 단면에서의 상대온도 및 전위 분포 측정)

  • Kwon, Oh-Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.829-836
    • /
    • 2003
  • Understanding of heat generation in semiconductor devices is important in the thermal management of integrated circuits and in the analysis of the device physics. Scanning thermal microscope was used to measure the temperature and the electric potential distribution on the cross-section of an operating metal-oxide-semiconductor field-effect transistor (MOSFET). The temperature distributions were measured both in DC and AC modes in order to take account of the leakage current. The measurement results showed that as the drain bias was increased the hot spot moved to the drain. The density of the iso-potential lines near the drain increased with the increase in the drain bias.

An Analysis of Insulation Performance Result from Shield of Outside Vacuum interrupter (진공인터럽터 외부쉴드가 절연성능에 미치는 영향 분석)

  • Yoon, Jae-Hun;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.100-100
    • /
    • 2010
  • Because of power consumption increase, global wanning, and limitation of installation, not only high reliability and interruption capability but also compact and light power apparatuses are needed. To improve the insulation performance, the high E field concentration phenomena was considered. Breakdown mechanism in vacuum is different from that in other insulation materials. therefore, It is necessary to understand the electric field distribution and insulation characteristics. This paper discusses the simulation and LI(light impulse) test of the shield of outside vacuum interrupter As a result, FEM simulation and LI test show that improve distribution of electrical field and equi-potential line. due to external shield. in this case, outside shield induced electric field of triple junction point.

  • PDF