• Title/Summary/Keyword: Electric insulation material

Search Result 252, Processing Time 0.025 seconds

Effect of Space Charge Density and High Voltage Breakdown of Surface Modified Alumina Reinforced Epoxy Composites

  • Chakraborty, Himel;Sinha, Arijit;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.121-124
    • /
    • 2013
  • The incorporation of 90 nm alumina particles into an epoxy matrix to form a composite microstructure is described in present study. It is shown that the use of ultrafine particles results in a substantial change in the behavior of the composite, which can be traced to the mitigation of internal charges when a comparison is made with conventional $Al_2O_3$ fillers. A variety of diagnostic techniques have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties. It is postulated that the $Al_2O_3$ particles are surrounded by high charge concentrations. Since $Al_2O_3$ particles have very high specific areas, these regions allow limited charge percolation through $Al_2O_3$ filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accumulated from the nano-formulated material. An optimum filler loading of about 0.5 wt.% was indicated.

Characteristics of superconducting fault current limiters with various pattern shape (초전도 전류제한기의 패턴형상별 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, G.K.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.529-532
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLs) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spiral shapes of identical line width, gap and margin. SFCLs were fabricated from YBCO thin films grown on two-inch diameter $Al_2O_3$ substrates under the same conditions. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, bi-spiral shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.

  • PDF

Temperature Dependence of Volume Resistivity on Epoxy Nano-composites (에폭시 나노컴퍼지트 체적 고유저항의 온도 의존성)

  • Kim, Chang-Hoon;Lee, Young-Sang;Kang, Yong-Gil;Park, Hee-Doo;Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.834-838
    • /
    • 2011
  • This research shows the electrical characteristic using excellent epoxy nano-composite of MgO 5.0 wt% and $SiO_2$ 0.4 wt% in mechanical strength test depending on nano-additive. First of all, volume resistance depending on nano-additive and temperature using high resistance meter (HP. 4329A) by increasing 10, 100, 1,000 V of applying voltage was measured. Moreover, temperature range of $25{\sim}120^{\circ}C$ with virgin sample was tested using TO-9B oven by Ando Company. The result showed that virgin and the samples added with MgO and $SiO_2$ had similar value of volume resistance in low temperature and low electric field region and reduced with slow slope. The nano-composite's volume resistance of sample added with MgO and $SiO_2$ had higher value than virgin sample's volume resistance in high temperature region more than $80^{\circ}C$. Moreover, the slope has steeply reduced. The volume resistance of sample added with MgO 5.0 wt% was $8.38{\times}10^{13}\;{\Omega}{\cdot}cm$ and it was 6.8 times more than virgin sample in high temperature at $120^{\circ}C$. The insulation characteristics were constant although filler has changed in low temperature region. But, in high temperature region, the value of volume resistance of sample with MgO 5.0 wt% was 7.6 times more than the virgin sample's volume resistance.

A Study on Characteristics of Triple-band Plastic Chip Antenna for Mobile Terminal using Foamex Materials (Formax 매질을 이용한 이동통신 단말기용 삼중대역 플라스틱 칩 안테나에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2210-2216
    • /
    • 2007
  • In this paper, triple-band plastic chip antennas for mobile terminal are investigated. Plastic chip antenna is composed of Foamex material with circle of PVC(Polyvilyl chloride). For its electric characteristics, the dielectric constant is 1.9, the insulation intensity is 112KV/cm. Plastic chip antennas are don't tend to break easily against to external shock, have more gain and efficiency than ceramic chip antennas. Triple-band plastic chip antennas of four type are implemented and experimented. From the experiments results, the antenna resonate at the triple-band, the gain of the antennas has about above -2dB, the pattern is ommidirectional the same as the conventional antennas. So, the antennas realized with Foamex material will be application for mobile phone antenna operated at the triple band which is cellular band and Korea-PCS band and ISM band or the antenna for other wireless communication system.

A Study on the Working Clothes in the Changwon National Industrial Complex -Considering Clothing Performance and Motion Factors in Work Places- (창원국가산업공단 근로자들 작업복 착용실태에 관한 연구 -작업분야별 작업복 기능성 및 동작요인 중심으로-)

  • Park, Gin-Ah;Bae, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.10
    • /
    • pp.1571-1583
    • /
    • 2008
  • The study aimed to investigate the actual condition of working clothes in the Changwon National Industrial Complex and to analyze the industrial workers' satisfaction with and preference to the working clothes in terms of the clothing performance and work motion factors. 1 major companies in machinery, automotive, industrial engineering, shipbuilding and rolling stock industries located in the industrial complex were selected as the subject firms. Approximately 900 workers responded to the questionnaire designed for the research and the results derived from the research were as follows. (1) The subject employees were divided into 4 work groups, i.e. the $1^{st}$ work group: managerial, general affairs, sales, production planning; the $2^{nd}$ group: quality assurance, material planning and distribution, product inspection; the $3^{rd}$ group: electric, facilities, machinery, vehicles; and the $4^{th}$ group: cutting, pressing, rolling, welding and coating. (2) The significant work environmental factors considered by all work groups were air ventilation, noise and dust factors and in particular, the most dissatisfied factors evaluated by manufacture workers were insulation, noise, dust and vibration. (3) According to the employees' work motion evaluation, the work motion diversity and frequency increased in proportion to the degree of work intensity. Besides, manufacture workers more frequently wore the working clothes even during the off-duty hours comparing to the evaluation of the other work groups. (4) The most important clothing performance factors considered by manufacture work groups were perspiration absorption, stretch, air permeability, tactile sense softness, soil proof in order.

Development of Thermal-Conductivity Measurement System Using Cryocooler (극저온 냉동기를 이용한 열전도도 측정 시스템 개발)

  • Shin, Dong-Won;Kim, Dong-Lak;Yang, Hyung-Suk;Choi, Yeon-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • The thermal property of insulation material is essential in developing a high-temperature superconductor (HTS) power cable to be operated at around liquid-nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore, accurate estimate of the heat flow is difficult in the case of nonmetallic materials. The aim of this study is to develop an instrument for precisely measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The details of the thermal-conductivity measurement system, including the design and fabrication processes, are described in this paper. In addition, the design optimization to minimize unavoidable heat leakage from room temperature is discussed.

Analysis of Electrical and Thermal Signal for Series Arc in Electrical Contact (전선의 접속부에서 직렬아크에 의한 전기적 및 열적 신호 분석)

  • Kim, Doo Hyun;Hwang, Dong Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • This paper is aimed to analyze the electrical and thermal signal such as ignition possibility, ignition time, thermal characteristics and arc fault power that are associated with electrical fire in case of the occurrence of series arc at IV wiring used for interior wiring at commercial power source. In order to analyze the signal, series arc was induced by generating the constant vibration through vibrating device in the one phase (R phase) and ignition possibility was analyzed along the condition of current value by adding cotton material to the contact point of wiring. The ignition time is shortened as the electric current value increased, burning time is not associated with current value and the temperature rose up to $740^{\circ}C$ though it was not ignited. It was checked out that the temperature was the energy source enough that can generate the fire related with insulation aging of wiring and the inflammable. The possibility of electrical fire by series arc was shown as more than 12% at 5A, more than 42% at 20A and arc showed 27W at 5A, 180W at 20A. It was confirmed that the possibility of electrical fire exists at the condition as above and the circuit breaker did not operate. This data can be used as the reference value for the investigation of electrical fire or development of the circuit breaker.

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

Research on the Heat Exchanger for Kimchi Refrigerator Using Thermal Conductive Plastic (열전도성 플라스틱을 이용한 김치냉장고용 열교환기에 관한 연구)

  • Kang Tae-Ho;Baek Jong-Yong;Kwon Yong-Ha;Kim In-Kwan;Kim Young-Soo;Sin Dae-Sik;Park Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2005
  • The kimchi refrigerator is the electric home appliance which is used for the maturing and preserving of the kimchi in domestic and foreign market. The kimchi refrigerator is composed in 3 main parts as insulation. kimchi container, machinery room. The heat exchanger of kimchi refrigerator is made of aluminum and the other parts are made of steel and polymer. Also, kimchi refrigerator is expensive and heavy as compared with same class of refrigerator until now. In the present study, the possibility to replace heat exchanger from aluminum to thermal conductive plastic was analyzed and experimented. The thermal conductive plastic has $10{\sim}100$ times heat conductivity than that of normal plastic. It is known that heat transfer process is dependent not only conduction but convection or radiation. Thermal conductivity of the applied material in this research is over than 2 W/mK, thermal conductivity doesn't play a vital role on heat transfer. In this study, temperature is the most important parameter on the kimchi refrigerator and the temperature of kimchi refrigerator's heat exchanger was measured and compared with the temperature calibrated by CFD analysis on the inside wall of the kimchi refrigerator. It is important to keep constantly the inside temperature of the Kimchi refrigerator. Besides numerical analyses for the new thermal conductive plastic for heat exchanger were executed with the various height of evaporation tube. A series of experiments were conducted to compare the performance of the two heat exchanger made of aluminum and thermal conductive plastic at the same condition and certified the possibility of the thermal conductive plastic. According to these results, it was confirmed that the conventional aluminium heat exchanger can be replaced by thermal conductive plastic successfully.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.