• Title/Summary/Keyword: Electric forecasting

Search Result 177, Processing Time 0.033 seconds

Locational Marginal Price Forecasting Using Artificial Neural Network (역전파 신경회로망 기반의 단기시장가격 예측)

  • Song Byoung Sun;Lee Jeong Kyu;Park Jong Bae;Shin Joong Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

CLUSTER ANALYSIS FOR REGION ELECTRIC LOAD FORECASTING SYSTEM

  • Park, Hong-Kyu;Kim, Young-Il;Park, Jin-Hyoung;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.591-593
    • /
    • 2007
  • This paper is to cluster the AMR (Automatic Meter Reading) data. The load survey system has been applied to record the power consumption of sampling the contract assortment in KEPRI AMR. The effect of the contract assortment change to the customer power consumption is determined by executing the clustering on the load survey results. We can supply the power to customer according to usage to the analysis cluster. The Korea a class of the electricity supply type is less than other country. Because of the Korea electricity markets exists one electricity provider. Need to further divide of electricity supply type for more efficient supply. We are found pattern that is different from supplied type to customer. Out experiment use the Clementine which data mining tools.

  • PDF

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Forecasting Technique of Line Utilization based on SNMP MIB-II Using Time Series Analysis (시계열 분석을 이용한 SNMP MIB-II 기반의 회선 이용률 예측 기법)

  • Hong, Won-Taek;An, Seong-Jin;Jeong, Jin-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2470-2478
    • /
    • 1999
  • In this paper, algorithm is proposed to forecast line utilization using SNMP MIB-II. We calculate line utilization using SNMP MIB-II on TCP/IP based Internet and suggest a method for forecasting a line utilization on the basis of past line utilization. We use a MA model taking difference transform among ARIMA methods. A system for orecasting is proposed. To show availability of this algorithm, some results are shown and analyzed about routers on real environments. We get a future line utilization using this algorithm and compare it ot real data. Correct results are obtained in case of being few data deviating from mean value. This algorithm for forecasting line utilization can give effect to line c-apacity plan for a manager by forecasting the future status of TCP/IP network. This will also help a network management of decision making of performance upgrade.

  • PDF

The Optimal Compensation Scheme for Large-scale Windfarm using Forecasting Algorithm and Energy Storages (예측 알고리즘와 에너지 저장장치를 이용한 풍력발전단지 최적 출력 보상 방안)

  • Lee, Han-Sang;Kim, Ka-Byong;Jung, Se-Yong;Park, Byeong-Cheol;Han, Sang-Chul;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.396-397
    • /
    • 2011
  • As moving away from fossil fuel makes rapid progress, new paradigm has arisen in the power industry area. Developing alternative energy source is progressing actively, the proportion of renewable energy in electricity production is expected to be increased. Because the output of wind farm depends on wind characteristic, minimizing the output fluctuation is a key to keep the power system controllable and stable. Various compensation scheme for stabilizing the output of wind farm has been developed. Considering some requirements such as reaction velocity, controllability, scalability and applicability, energy storage system is one of the effective methods for spreading of renewable energy. In this paper, method of compensating method with forecasting algorithm was simulated, and then the results was analyzed.

  • PDF

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.