• Title/Summary/Keyword: Electric forecasting

Search Result 177, Processing Time 0.028 seconds

Short-term Electric Load Forecasting using temperature data in Summer Season (기온데이터를 이용한 하계 단기 전력수요예측)

  • Koo, Bon-gil;Lee, Heung-Seok;Lee, Sang-wook;Lee, Hwa-Seok;Park, Juneho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

The 24 Hourly Load Forecasting of the Election Day Using the Load Variation Rate (부하변동율을 이용한 선거일의 24시간 수요예측)

  • Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1041-1045
    • /
    • 2010
  • Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.

Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy (신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법)

  • Ja-hyun, Baek;Hyeonjin, Kim;Soonho, Choi;Sangho, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

A Stochastic Pplanning Method for Semand-side Management Program based on Load Forecasting with the Volatility of Temperature (온도변동성을 고려한 전력수요예측 기반의 확률론적 수요관리량 추정 방법)

  • Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.852-856
    • /
    • 2015
  • Demand side management (DSM) program has been frequently used for reducing the system peak load because it gives utilities and independent system operator (ISO) a convenient way to control and change amount of electric usage of end-use customer. Planning and operating methods are needed to efficiently manage a DSM program. This paper presents a planning method for DSM program. A planning method for DSM program should include an electric load forecasting, because this is the most important factor in determining how much to reduce electric load. In this paper, load forecasting with the temperature stochastic modeling and the sensitivity to temperature of the electric load is used for improving load forecasting accuracy. The proposed planning method can also estimate the required day, hour and total capacity of DSM program using Monte-Carlo simulation. The results of case studies are presented to show the effectiveness of the proposed planning method.

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

Short-term Electric Load Forecasting Using Data Mining Technique

  • Kim, Cheol-Hong;Koo, Bon-Gil;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • In this paper, we introduce data mining techniques for short-term load forecasting (STLF). First, we use the K-mean algorithm to classify historical load data by season into four patterns. Second, we use the k-NN algorithm to divide the classified data into four patterns for Mondays, other weekdays, Saturdays, and Sundays. The classified data are used to develop a time series forecasting model. We then forecast the hourly load on weekdays and weekends, excluding special holidays. The historical load data are used as inputs for load forecasting. We compare our results with the KEPCO hourly record for 2008 and conclude that our approach is effective.

Short-term Electric Load Forecasting Based on Wavelet Transform and GMDH

  • Koo, Bon-Gil;Lee, Heung-Seok;Park, Juneho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.832-837
    • /
    • 2015
  • The group method of data handling (GMDH) algorithm has proven to be a powerful and effective way to extract rules or polynomials from an electric load pattern. However, because it is nonstationary, the load pattern needs to be decomposed using a discrete wavelet transform. In addition, if a load pattern has a complicated curve pattern, GMDH should use a higher polynomial, which requires complex computing and consumes a lot of time. This paper suggests a method for short-term electric load forecasting that uses a wavelet transform and a GMDH algorithm. Case studies with the proposed algorithm were carried out for one-day-ahead forecasting of hourly electric loads using data during the years 2008-2011. To prove the effectiveness of our proposed approach, the results were evaluated and compared with those obtained by Holt-Winters method and artificial neural network. Our suggested method resulted in better performance than either comparison group.

The Study on the Human Resource Forecasting Model Development for Electric Power Industry (전력산업 인력수급 예측모형 개발 연구)

  • Lee, Yong-Suk;Lee, Geun-Joon;Kwak, Sang-Man
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

Short-term Electric Load Forecasting for Summer Season using Temperature Data (기온 데이터를 이용한 하계 단기전력수요예측)

  • Koo, Bon-gil;Kim, Hyoung-su;Lee, Heung-seok;Park, Juneho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.

Load Forecasting for Holidays Using a Fuzzy Least Squares Linear Regression Algorithm (퍼지 최소 자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측)

  • Song Kyung-Bin;Ku Bon-Suk;Baek Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.233-237
    • /
    • 2003
  • An accurate load forecasting is essential for economics and stability power system operation. Due to high relationship between the electric power load and the electric power price, the participants of the competitive power market are very interested in load forecasting. The percentage errors of load forecasting for holidays is relatively large. In order to improve the accuarcy of load forecasting for holidays, this paper proposed load forecasting method for holidays using a fuzzy least squares linear regression algorithm. The proposed algorithm is tested for load forecasting for holidays in 1996, 1997, and 2000. The test results show that the proposed algorithm is better than the algorithm using fuzzy linear regression.