• Title/Summary/Keyword: Electric forecasting

Search Result 177, Processing Time 0.025 seconds

Long-term Distribution Planning considering economic indicator (경제지표를 이용한 중장기 배전계획 수립에 관한 연구)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Jeom-Sik;Moon, Bong-Woo;Han, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1468-1471
    • /
    • 1999
  • This paper presents a method of the regional long-term distribution planning considering economic indicator with the assumption that energy demands proportionally increases with the economic indicators. For the practical distribution planning, it is necessary to regional load forecasting, distribution substation planning, distribution feeder planning. Accordingly, in this paper, after performing regional load forecasting considering economic indicator, it is performed distribution substation planning and distribution feeder planning in order by using this result. For accurate distribution planning, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because distribution planning results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. In this paper, various steps microscopically and macro scopically are used for the regional long-term distribution planning in order to increase the accuracy and practical use of the results

  • PDF

Prediction of Energy Consumption in a Smart Home Using Coherent Weighted K-Means Clustering ARIMA Model

  • Magdalene, J. Jasmine Christina;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.177-182
    • /
    • 2022
  • Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Electricity forecasting model using specific time zone (특정 시간대 전력수요예측 시계열모형)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.275-284
    • /
    • 2016
  • Accurate electricity demand forecasts is essential in reducing energy spend and preventing imbalance of the power supply. In forcasting electricity demand, we considered double seasonal Holt-Winters model and TBATS model with sliding window. We selected a specific time zone as the reference line of daily electric demand because it is least likely to be influenced by external factors. The forecasting performance have been evaluated in terms of RMSE and MAPE criteria. We used the observations ranging January 4, 2009 to December 31 for testing data. For validation data, the records has been used between January 1, 2012 and December 29, 2012.

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

Short-term demand forecasting method at both direction power exchange which uses a data mining (데이터 마이닝을 이용한 양방향 전력거래상의 단기수요예측기법)

  • Kim Hyoung Joong;Lee Jong Soo;Shin Myong Chul;Choi Sang Yeoul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.722-724
    • /
    • 2004
  • Demand estimates in electric power systems have traditionally consisted of time-series analyses over long time periods. The resulting database consisted of huge amounts of data that were then analyzed to create the various coefficients used to forecast power demand. In this research, we take advantage of universally used analysis techniques analysis, but we also use easily available data-mining techniques to analyze patterns of days and special days(holidays, etc.). We then present a new method for estimating and forecasting power flow using decision tree analysis. And because analyzing the relationship between the estimate and power system ceiling Trices currently set by the Korea Power Exchange. We included power system ceiling prices in our estimate coefficients and estimate method.

  • PDF

Long-term Load Forecasting using Fuzzy Neural Network (퍼지 신경회로망을 이용한 장기 전력수요 예측)

  • Park, S.H.;Choi, J.G.;Park, J.G.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.491-493
    • /
    • 1995
  • In this paper, the method of long-term load forecasting using a fuzzy neural network of which input is a fuzzy membership function value of a input variable like as GNP which is considered to affect demand of load. The proposed method was applicated in Korea Electric Power Corporation (KEPCO). The comparison with Error Back-Propagation Neural Network has been shown.

  • PDF

A Design on Supplied Forecasting System of Electrical Power using Chaos Fuzzy Algorithm (카오스 퍼지 알고리즘을 이용한 전력수요량 예측시스템 설계)

  • Choo, Yeon-Gyu;Lee, Chae-Dong;Kim, Bong-Ki;Lee, Kwang-Seak;Kim, Hyun-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.697-700
    • /
    • 2005
  • 최근들어 전력의 안정적인 공급과 계통의 안정한 운용 등을 위해서 신뢰성 높은 전력수요예측의 필요성이 점차 증가하고 있다. 본 논문에서는 기존에 제시된 예측시스템보다 정확도가 높은 전력수요예측을 위해 카오스 이론과 퍼지 보산 알고리즘을 이용하여 전력수요량 예측시스템을 제안한다. 최대수요 전력 시계열 데이터를 수집하여 카오스 성질을 분석하여 이를 바탕으로 퍼지 알고리즘을 적용한 전력수요량 예측 시스템을 구성하고, 이 시스템을 통하여 얻어진 결과와 실제 데이터를 비교함으로서 시스템의 성능을 평가한다.

  • PDF

Development of Bus Load Forecasting System based on Windows95 : Part I (윈도우즈95에 기초한 모선수요예측시스템의 개발(I))

  • Jeon, Dong-Hoon;Song, Seok-Ha;Lim, Joo-Il;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.169-171
    • /
    • 1996
  • In this paper, we have developed bus load forecasting system (BUSLOF) based on Windows 95. It has been developed for the secure operation of electric power system. It forecasts regional load and bus load using regional distribution factor(RDF) and bus distribution factor (BDF) which are calculated from bus load in the past. It is equipped with graphic user interface(GUI) which enables a user to easily access to the system. The performance of the developed system is estimated in sample data.

  • PDF