• Title/Summary/Keyword: Electric field density

Search Result 582, Processing Time 0.03 seconds

Preparation of a Bi$_{4}$Ti$_{3}$O$_{12}$ Thin Film and Its Electrical Properties (Bi$_{4}$Ti$_{3}$O$_{12}$ 박막의 제작과 그 특성에 관한 연구)

  • Gang, Seong-Jun;Jang, Dong-Hun;Min, Gyeong-Jin;Kim, Seong-Jin;Jeong, Yang-Hui;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.7-14
    • /
    • 2000
  • A Bi$_{4}$Ti$_{3}$O$_{12}$ (BIT) thin film is prepared by sol-gel method using acetate precursors and evaluated whether it could be applied to NVFRAM (Non-Volatile Ferroelectric RAM). The drying and the annealing temperature are 40$0^{\circ}C$ and $650^{\circ}C$, respectively and they are determined from the DT-TG (Differential Thermal-Thermal Gravimetric) analysis. The BIT thin film deposited on Pt/Ta/SiO$_{2}$/Si substrate shows orthorhombic perovskite phase. The grain size and the surface roughness are about 100 nm and 70.2$\AA$, respectively. The dielectric constant and the loss tangent at 10 KHz are 176 and 0.038, respectively, and the leakage current density at 100 ㎸/cm is 4.71 $mutextrm{A}$/$\textrm{cm}^2$. In the results of hysteresis loops measured at $\pm$250 ㎸/cm, the remanent polarization (Pt) and the coercive field (Ec) are 5.92 $\mu$C/$\textrm{cm}^2$ and 86.3 ㎸/cm, respectively. After applying 10$^{9}$ square pulses of $\pm$5V, the remanent polarization of the BIT thin film decreases as much as about 33% from 5.92 $\mu$C/$\textrm{cm}^2$ of initial state to 3.95 $\mu$C/$\textrm{cm}^2$.

  • PDF

커패시터에의 적용을 위해 PET 필름에 스퍼터 증착한 ZrO2 박막의 특성

  • Gwon, Neung;Fei, Chen;Ryu, Han;Park, Sang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.1-389.1
    • /
    • 2014
  • 최근의 환경 및 에너지에 대한 관심으로 수요가 증가하고 있는 하이브리드 및 전기 자동차나 태양광발전, 풍력발전용의 인버터기기에는 고에너지밀도 커패시터가 필수적이 되었다. 높은 에너지 밀도를 요구하는 전력전자, 펄스파워 등의 응용분야에 사용되는 고에너지밀도 커패시터는 PET (Polyethylene terephtalate)와 PP (Polypropylene)와 같은 폴리머 유전체를 사용하는 범용 필름 커패시터가 사용되었으나 사용 요구 조건의 한계에 도달하여, 새로운 유전체를 적용하는 커패시터가 절실히 필요한 상황이다. PET와 PP와 같은 유전체는 유전상수가 2~3의 낮은 값을 가지고 있어 고에너지밀도를 구현하기가 어렵다. 본 연구에서는 새롭게 요구되고 있는 고에너지 밀도 커패시터의의 성능을 만족시키기 위하여 $20{\sim}50{\mu}m$ 두께의 PET 필름상에 세라믹 유전체인 $ZrO_2$ 박막을 스퍼터(Sputter) 증착법에 의해 코팅하여 종래의 필름 커패시터와 세라믹 커패시터의 장점을 갖는 커패시터를 제조하기 위한 박막 유전재료의 개발을 목표로 하였다. 수백 nm~수 ${\mu}m$ 두께의 $ZrO_2$ 박막을 스퍼터링 공정조건에 따라 증착한 후 박막의 결정성, 기판과의 부착성, 증착속도, 유전상수, 절연파괴강도, 온도안정성 등을 XRD, SEM, AFM, EDS, XPS, Impedance analyzer 등에 의해 평가하였다. $ZrO_2$ 유전체막은 상온에서 증착하였음에도 정방정(tetragonal)구조의 결정질로 성장하였고 증착압력이 증가함에 따라 주피크의 세기가 감소하였다. 증착 중 산소가스를 주입하였을 경우에도 결정질막으로 성장하였다. 증착막들은 산소가스의 양이 증가함에 따라 짙은 흰색으로 변하였으며 PET 기판과의 접착력도 약해졌다. 또한 거칠기는 Ar가스만으로 증착한 경우보다 증가하였으며 24~66 nm의 평균 거칠기값을 보였다. PET위에 Ar가스만으로 증착한 $ZrO_2$의 비유전율은 1kHz에서 116~87의 비유전율을 보여 PET에 비해 매우 우수한 특성을 보였다. $ZrO_2$ 막들은 300kV/cm의 전계에서 대략 10-8A 이하의 누설전류를 보였다. 증착가스비를 달리하여 제조된 시편에서도 유사한 누설전류값을 나타내었다. 300 kV/cm 전후의 전계까지 측정한 $ZrO_2$ 막의 P-E (polarization-electric field) 특성을 확인하였는데, 5 mTorr의 압력에서 증착한 막은 253 kV/cm에서 $5.5{\mu}C/cm^2$의 분극값을 보였다. P-E커브의 기울기와 분극량에 따라 에너지밀도가 달라지므로 공정조건에 따라 에너지밀도가 변화됨을 예측할 수 있었다. PET위에 스퍼터 증착한 $ZrO_2$ 유전체막은 5mTorr의 Ar가스분위기에서 제조할 때 가장 안정적인 구조를 보였으며, 고에너지밀도 커패시터에의 적용가능성을 보였다.

  • PDF

Strong Carrier Localization and Diminished Quantum-confined Stark Effect in Ultra-thin High-Indium-content InGaN Quantum Wells with Violet Light Emission

  • Ko, Suk-Min;Kwack, Ho-Sang;Park, Chunghyun;Yoo, Yang-Seok;Yoon, Euijoon;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.293-293
    • /
    • 2014
  • Over last decade InGaN alloy structures have become the one of the most promising materials among the numerous compound semiconductors for high efficiency light sources because of their direct band-gap and a wide spectral region (ultraviolet to infrared). The primary cause for the high quantum efficiency of the InGaN alloy in spite of high threading dislocation density caused by lattice misfit between GaN and sapphire substrate and severe built-in electric field of a few MV/cm due to the spontaneous and piezoelectric polarizations is generally known as the strong exciton localization trapped by lattice-parameter-scale In-N clusters in the random InGaN alloy. Nonetheless, violet-emitting (390 nm) conventional low-In-content InGaN/GaN multi-quantum wells (MQWs) show the degradation in internal quantum efficiency compared to blue-emitting (450 nm) MQWs owing higher In-content due to the less localization of carrier and the smaller band offset. We expected that an improvement of internal quantum efficiency in the violet region can be achieved by replacing the conventional low-In-content InGaN/GaN MQWs with ultra-thin, high-In-content (UTHI) InGaN/GaN MQWs because of better localization of carriers and smaller quantum-confined Stark effect (QCSE). We successfully obtain the UTHI InGaN/GaN MQWs grown via employing the GI technique by using the metal-organic chemical vapor deposition. In this work, 1 the optical and structural properties of the violet-light-emitting UTHI InGaN/GaN MQWs grown by employing the GI technique in comparison with conventional low-In-content InGaN/GaN MQWs were investigated. Stronger localization of carriers and smaller QCSE were observed in UTHI MQWs as a result of enlarged potential fluctuation and thinner QW thickness compared to those in conventional low-In-content MQWs. We hope that these strong carrier localization and reduced QCSE can turn the UTHI InGaN/GaN MQWs into an attractive candidate for high efficient violet emitter. Detailed structural and optical characteristics of UTHI InGaN/GaN MQWs compared to the conventional InGaN/GaN MQWs will be given.

  • PDF

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA ($O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성)

  • Kim, In-Seong;Song, Jae-Seong;Yun, Mun-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.

The Effect of the Deposition Temperature and la Doping Concentration on the Properties of the (Pb, La)$\textrm{TiO}_3$ Films Deposited by ECR PECVD (증착온도와 La조성비가 ECR 플라즈마 화학기상증착법으로 증착한 (Pb, La)$\textrm{TiO}_3$박막의 물성에 미치는 영향)

  • Jeong, Seong-Ung;Park, Hye-Ryeon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • Perovskite lanthanum doped lead titanate ($(Pb,La)TiO_{3}$ or PLT) thin films were successfully fabricated on Pt/TijSiO.iSi substrates at the temperatures as low as $440~500^{\circ}C$ by eleclron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVII). Since the volatilities of the MC sources arid oxide molecules (especially Ph oxide) increased with increasing deposition temperature, the film deposition rate and the (I'b + La)/'Ti ratio decreased Stoichiometric perovskite PL'T films with good dielectric and leakeage current properties were obtained at the temperatures of $460~480^{\circ}C$. The lanthanum content of the film was nearly directly propotional to $La(DPM)_{3}$ flow rate. As the La/Ti ratio increased from 3.0 to 9.5%, the dielectric constant increased from 360 to 650 and the leakeage current density at 100kV/cm electric field decreased from $4{\times}10^{-5}$ to $4{\times}10_{-8}A/cm^2$.

  • PDF

Comparison of Treatment Planning System(TPS) and actual Measurement on the surface under the electron beam therapy with bolus (전자선 치료 시 Bolus를 적용한 경우 표면선량의 Treatment Planning System(TPS) 계산 값과 실제 측정값의 비교)

  • Kim, Byeong Soo;Park, Ju Young;Park, Byoung Suk;Song, Yong Min;Park, Byung Soo;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Purpose : If electron, chosen for superficial oncotherapy, was applied with bolus, it could work as an important factor to a therapy result by showing a drastic change in surface dose. Hence the calculation value and the actual measurement value of surface dose of Treatment Planning System (TPS) according to four variables influencing surface dose when using bolus on an electron therapy were compared and analyzed in this paper. Materials and Methods : Four variables which frequently occur during the actual therapies (A: bolus thickness - 3, 5, 10 mm, B: field size - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: energy - 6, 9, 12 MeV, D: gantry angle - $0^{\circ}$, $15^{\circ}$) were set to compare the actual measurement value with TPS(Pinnacle 9.2, philips, USA). A computed tomography (lightspeed ultra 16, General Electric, USA) was performed using 16 cm-thick solid water phantom without bolus and total 54 beams where A, B, C, and D were combined after creating 3, 5 and 10 mm bolus on TPS were planned for a therapy. At this moment SSD 100 cm, 300 MU was investigated and measured twice repeatedly by placing it on iso-center by using EBT3 film(International Specialty Products, NJ, USA) to compare and analyze the actual measurement value and TPS. Measured film was analyzed with each average value and standard deviation value using digital flat bed scanner (Expression 10000XL, EPSON, USA) and dose density analyzing system (Complete Version 6.1, RIT, USA). Results : For the values according to the thickness of bolus, the actual measured values for 3, 5 and 10 mm were 101.41%, 99.58% and 101.28% higher respectively than the calculation values of TPS and the standard deviations were 0.0219, 0.0115 and 0.0190 respectively. The actual values according to the field size were $6{\time}6$, $10{\time}10$ and $15{\time}15cm2$ which were 99.63%, 101.40% and 101.24% higher respectively than the calculation values and the standard deviations were 0.0138, 0.0176 and 0.0220. The values according to energy were 6, 9, and 12 MeV which were 99.72%, 100.60% and 101.96% higher respectively and the standard deviations were 0.0200, 0.0160 and 0.0164. The actual measurement value according to beam angle were measured 100.45% and 101.07% higher at $0^{\circ}$ and $15^{\circ}$ respectively and standard deviations were 0.0199 and 0.0190 so they were measured 0.62% higher at $15^{\circ}$ than $0^{\circ}$. Conclusion : As a result of analyzing the calculation value of TPS and measurement value according to the used variables in this paper, the values calculated with TPS on 5 mm bolus, $6{\time}6cm2$ field size and low-energy electron at $0^{\circ}$ gantry angle were closer to the measured values, however, it showed a modest difference within the error bound of maximum 2%. If it was beyond the bounds of variables selected in this paper using electron and bolus simultaneously, the actual measurement value could differ from TPS according to each variable, therefore QA for the accurate surface dose would have to be performed.

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Growth and Photocurrent Properties of CdIn2S4/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy 법에 의한 CdIn2S4 단결정 박막의 성장과 광전류 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon;Park, Jin-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.309-318
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdIn_2S_4$ single crystal thin films measured with Hall effect by van der Pauw method are $9.01{\times}10^{16}\;cm^{-3}$ and $219\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7116\;eV-(7.74{\times}10^{-4}\;eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasi cubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K areascribed to the $A_1$-, $B_1$-, and C1-exciton peaks for n = 1.