• Title/Summary/Keyword: Electric device

Search Result 1,827, Processing Time 0.029 seconds

Design and Development of Micro Combustor (II) - Design and Test of Micro Electric Spark discharge Device for Power MEMS - (미세 연소기 개발 (II) - 미세동력 장치용 미세 전극의 제작과 성능평가 -)

  • Gwon, Se-Jin;Lee, Dae-Hun;Park, Dae-Eun;Yun, Jun-Bo;Han, Cheol-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.524-530
    • /
    • 2002
  • Micro electric spark discharge device was fabricated on a FOTURAN glass wafer using MEMS processing technique and its performance of electron discharge and subsequent formation of ignition kernel were tested. Micro electric spark device is an essential subsystem of a power MEMS that has been under development in this laboratories. In a combustion chamber of sub millimeter scale depth, spark electrodes are formed by electroplating Ni on a base plate of FOTURAN glass wafer. Optimization of spark voltage and spark gap is crucial for stable ignition and endurance of the electrodes. Namely, wider spark gaps insures stable ignition but requires higher ignition voltage to overcome the spark barrier. Also, electron discharge across larger voltage tends to erode the electrodes limiting the endurance of the overall system. In the present study, the discharge characteristics of the proptotype ignition device was measured in terms of electric quantities such as voltage and currant with spark gap and end shape as parameters. Discharge voltage shows a little decrease in width of less than 50㎛ and increases with electrode gap size. Reliability test shows no severe damage over 10$\^$6/ times of discharge test resulting in satisfactory performance for application to proposed power MEMS devices.

Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns (LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Jung-Hwan;Yoo, Je-Gwang;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

Color Change in Pressed Rose Petals as Affected by Pressing Method (압화 방법에 따른 장미 꽃잎의 변색)

  • Byun, Mi Soon;Kim, Soon Ja;Kim, Kiu Weon
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Typical rose flowers, 'Red Corvette (red)', 'Nobless (pink)', 'Golden Metal (yellow)', and 'Rose Yumi (white)', were used as experimental materials to examine flower color changes as affected by pressing method and light treatment for four weeks and eight weeks by 2,000 lux fluorescent light at a 16 hours daylength. Pressing materials in silicagel mat resulted in the least change after pressing and light treatment for all kinds. On the contrary, an electric pressing device caused color to change to brown. Flower colors deteriorated the most by an electric pressing device made in Korea for pink rose; an electric pressing device made in Japan for white rose; and paper sheet made in Korea for red rose. The sequence of degree in severity of color change after pressing was pink, yellow, and white roses. Light treatment brought about the most extreme color change in yellow 'Nobless' rose, while other three cultivars were rather stable in change of color.

수성 고분자 - 탄소나노튜브 복합 분산 용액을 이용한 전계 방출 소자의 제작

  • Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.66.2-66.2
    • /
    • 2011
  • A polymer-based multi-walled carbon nanotube (MWCNT) field emission device was fabricated from a composite dispersion of MWCNTs and waterborne polymethyl methacrylate (PMMA). The waterborne PMMA synthesized through the emulsion polymerization method was added to minimize the reagglomeration of dispersed MWCNTs with surfactants in water, and increase the adhesion between the and the substrate. The field emission properties of the fabricated device were optimized by adjusting the density of the emitter and the adhesion between the MWCNTs and the substrate. These were done by controlling the polymer concentration added to the MWCNT dispersion, as well as the amount of spray coating on the substrate. The results confirm the successful fabrication of a polymer-based MWCNT field emission device with a low field of 1.07 $V/{\mu}m$ and a good electric field enhancement factor of 2445. The device was fabricated by adding 0.8 mg/mL of polymer solution to the MWCNT dispersion and applying 20 cycles of spray coating. Application of this same MWCNT/polymer composite solution to a flexible polymer substrate also resulted in the successful fabrication of an electric field emission device with uniform emission and long time stability.

  • PDF

A study on neutral section device adopted in the catenary system with maximum speed of 200km/h (최대 200km/h로 속도 향상된 Catenary system에 적용한 절연구분장치)

  • Ahn Young-Hoon;Gang Chang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.541-546
    • /
    • 2003
  • The study is about a neutral section device adopted in the catenary system in connection with KNR's project to electrify the conventional Honam-Line. A neutral section device(PTFE type) adopting into catenary system accepts a train velocity of 200km/h, installed firstly in Korea electric. railway system. This study shows technologies and construction cases of the neutral section device.

  • PDF

Development of Non-Electric and Delay Explosive Bolt (비전기식 지연형 폭발볼트 개발)

  • Lee YeungJo;Kim DongJin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.92-95
    • /
    • 2005
  • The present work has been developed the type of non-electric and delay explosive bolt which does not need power supply device and has the delay function in the operation of the explosive bolt. Separation device system could be minimized because of non-electric power supply system. In order to prove the mechanism of operation, the present work used to ignite the initiator the power of air resistance caused front aviation object. we can be founded from the present work that the changes in the operation load influence directly the ignition of the initiator. The design of non-electric and delay explosive bolt is the most suitable the separation system necessary to reduce the velocity of aviation object and safe landing of parachute system.

  • PDF

Construction and Evaluation of an Experimental Type Torque Converter by Adapting an Electrorheological Fluid as an Operating Medium (전기유변유체를 동작매체로 하는 실험용 토크 전달장치 제작 및 성능평가)

  • 김상국;정동운;최윤대
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2706-2711
    • /
    • 1994
  • In this work, an experimental type of torque converter has been constructed and its characteristics have been evaluated by adapting an electrorheological fluid(ERF) as an operating medium. The device was designed by using the equations which were proposed by Carlson et al. The correlation between the rheological behaviour of an ERF and mechanical parameters of the clutch has been investigated. The torque generated by an ERF in this device is sum of one due to the yield strength by polarizing dispersed particles in dielectric oil and one due to the viscous drag. The experimental results are presented in terms of torque and current density as a function of rotational speed at various electric field strength applied. Experimental results showed that the measured torque was rapidly increased with the increase of the electric field, generally being proportional to the rotational speed of the motor. The measured current was shown to be increased with the increased electric field. Also, the current was decreased with the increase of increased with the increased electric field. Also, the current was decreased with the increase of the rotational speed of the motor and reached plateau region after f = 5 Hz.

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Lee, Nam Hee;Ko, Minsu;Choi, Insung S.;Yun, Wan Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1035-1038
    • /
    • 2013
  • Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

A Study on Displacement Current Characteristics of DLPC Monolayer (I) (DLPC 인지질 단분자막의 변위전류 특성 연구 (I))

  • Song, Jin-Won;Lee, Kyung-Sup;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.117-122
    • /
    • 2007
  • LB method is one of the most interesting technique to arrange certain molecular groups at precise position relative to others. Also, the LB deposition technique can fabricate extremely thin organic films with a high degree of control over their thickness and molecular architecture. In this way, new thin film materials can be built up at the molecular level, and the relationship between these artificial structures and the properties of materials can be explored. In this paper, evaluation of physical properties was made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC. Lipid thin films were manufacture by detecting deposition for the accumulation and the current was measured after the electric bias was applied across the manufactured MIM device. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid mono-layer, it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

A Simple Analytical Model for the Study of Optical Bistability Using Multiple Quantum Well p-i-n Diode Structure

  • Jit, S.;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.63-73
    • /
    • 2004
  • A simple analytical model has been presented for the study of the optical bistability using a $GaAs-Al_{0.32}Ga_{0.68}As$ multiple quantum well (MQW) p-i-n diode structure. The calculation of the optical absorption is based on a semi-emperical model which is accurately valid for a range of wells between 5 and 20 nm and the electric field F< 200kV/cm . The electric field dependent analytical expression for the responsivity is presented. An attempt has been made to derive the analytical relationship between the incident optical power ( $(P_{in})$ ) and the voltage V across the device when the diode is reverse biased by a power supply in series with a load resistor. The relationship between $P_{in}$ and $P_{out}$ (i.e. transmitted optical power) is also presented. Numerical results are presented for a typical case of well size $L_Z=10.5nm,\;barrier\;size\;L_B=9.5nm$ optical wave length l = 851.7nm and electric field F? 100kV/cm. It has been shown that for the values of $P_{in}$ within certain range, the device changes its state in such a way that corresponding to every value of $P_{in}$ , two stable states and one unstable state of V as well as of $P_{out}$ are obtained which shows the optically controlled bistable nature of the device.