• Title/Summary/Keyword: Electric cabinet

Search Result 31, Processing Time 0.02 seconds

Module level EMC verification method for replacement items in nuclear power plant

  • Hee-Taek Lim;Moon-Gi Min;Hyun-Ki Kim;Gwang-Hyun Lee;Chae-Hyun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2407-2418
    • /
    • 2023
  • Internal replaceable electronic module substitutions can impact EMC (ElectroMagnetic Compatibility) qualification testing and results if EMC testing is conducted at the cabinet level. The impact of component substitutions on EMC qualification results therefore should be evaluated. If a qualitative evaluation is not adequate to ensure that the modified product will not impact the cabinet level EMC qualification results, a new qualification testing should be conducted. Component level retesting should be conducted under electromagnetically equivalent conditions with the cabinet level test. This paper analyzes the propagation of conducted susceptibility test waveforms in a representative cabinet and evaluates the impact of component substitutions on cabinet level EMC qualification results according to the location of the replacement items. A guideline for a qualitative evaluation of the impact of component substitutions is described based on the propagation of the conducted susceptibility test waveforms. A module level test method is also described based on an analysis of the shielding effectiveness of the cabinet.

Model Updating of an Electric Cabinet using Shaking Table Test

  • Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie;Koo, Ki-Young;Cho, Yang-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.59-62
    • /
    • 2008
  • This paper presents the procedure and the results of modal identification testing of a seismic monitoring system central processing unit cabinet for a nuclear power plant. This paper also provides a model updating for making effective analytical modeling of cabinet-type electrical equipment by comparing the test results with the analysis results. From the test results and their interpretation, modal properties (modal frequency, mode shape, and modal damping) of the specimen were satisfactorily identified. However, the analysis results may need to study further to find the effective and presentative model for the cabinet-type electrical equipment. This paper just presents the first stage of the research project "Development of dynamic behavior analysis technique of dynamic structure system" which is trying to build the lumped mass beam stick model even their results do not agree well with the test results.

  • PDF

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker (가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석)

  • Cho, Sung-Gook;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Accurate modal identification analysis is required to reasonably perform a seismic qualification of safety-related electric equipment installed in nuclear power plants (NPPs). This study evaluates a variation of the modal properties of an electric equipment cabinet structure in NPPs according to the excitation levels. For the study, an actual electric equipment cabinet was selected as a specimen and was dynamically tested by using a portable exciter in accordance with the level of input vibration energy. Tests were classified into two sets: with-door cases, and without-door cases. Frequency response functions were computed from the signals of the acceleration responses and input motions measured from the vibration tests. A polynomial curve fitting algorithm was used to extract the modal properties from the frequency response functions. This study reviews the variation of the modal properties according to the variation of the excitation levels. The results of the study show that the modal frequencies and the modal dampings of the object specimen varies nonlinearly according to the excitation level of the test motion. Attaching the door increases the modal damping of the cabinet.

Development of Electric Safety Monitoring System and Cabinet Panel for Traditional Markets (재래시장 상가 분전반 및 전기안전감시시스템 개발 연구)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Shin, Seong-Su;Bae, Suk-Myong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.123-128
    • /
    • 2010
  • In this paper, in order to reduce the electric disaster damage which is caused by with electric equipment of traditional markets, we developed cabinet panel and the electric safety monitoring system which is able to monitor the electrical equipments condition(over current, leakage, arc, WH, electrical fire factor etc.) at traditional markets. We constructed Test-bed for testing reliability of electric safety monitoring system and the actual condition investigation about electrical equipment of traditional market. This paper will be used with the data for an actual demonstration project after reinforcing problems which are occurred to operation of traditional market actual loads.

Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성)

  • Chung, Yon Ha;Hong, Kee-Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

Shielding Effectiveness Analysis of the Digital Module Storage Cabinet for Nuclear Power Plants According to the Internal Structure and the Angle of EM wave Incidence (내부구조와 전파 입사각에 따른 원전용 디지털 모듈 보관 캐비닛의 차폐효과 분석)

  • Youn, Sang-Woon;Jang, Do-Young;Choo, Ho-Sung;Kim, Young-Mi;Lee, Jun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, the cabinet shielding effectiveness (SE) including digital modules for nuclear power plants is analyzed depending on the internal structure and electromagnetic (EM) wave incidence angle. To analyze the SE, the cabinet and modules are modeled using the FEKO EM simulation tool. The SE is then obtained by comparing the electric field with and without the cabinet. In addition, the cabinet SE is observed by changing various conditions such as the spacing of each digital module, incidence angle, and the polarization of the EM wave at the 2.4 G[Hz frequency. To verify the results, the dipole antenna for SE measurements is fabricated, and the SE is measured in a semi-anechoic chamber. The result demonstrates that the SE by the cabinet structure can be expected to be higher when the polarization of the incident EM wave is horizontal to the ground and the distance between the digital modules is wide.

A Development of Intelligent Metering and Control System for Energy Management of Electric Cabinet Panel (분전반 전력관리용 지능형 계측 제어 시스템 개발)

  • Park, Byung-Chul;Park, Jae-Sung;Song, Sung-Kun;Shin, Joong-Rin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.90-97
    • /
    • 2013
  • In recent years, the many electric saving methods are studied because of difficulty of meeting the demand. The electric energy management such as monitoring of branch power consumption, demand control, metering, power quality monitoring, electric safety monitoring can make energy saving. The purpose of this paper is to develop a system which can provide the integrated management of various functions required for energy management by consumers. In this system all functions which were embodied into each devices are integrated into intelligent meter. The developed systems are tested and implemented by installing at consumer electric distribution panel.

In-Cabinet Response Spectrum Comparison of Battery Charger by Numerical Analysis and Shaking Table Test (수치해석 및 진동대 실험을 통한 충전기의 캐비닛내부응답스펙트럼(ICRS) 결과 비교)

  • Lee, Sangjin;Choi, In-Kil;Park, Dong-Uk;Eem, Seung-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • The seismic capacity of electric cabinets in Nuclear Power Plants (NPPs) should be qualified before installation and be maintained during operation. However it can happen that identical devices cannnot be produced for replacement of devices mounted in electric cabinets. In case of when no In-Cabinet Response Spectrum (ICRS) is available for new devices, ICRS can be generated by using Finite Element Analysis (FEA). In this study we investigate structural response and ICRSs of battery charger which is supplied to NPPs. Test results on the battery charger are utilized in this study. The response is measured by accelerometers installed on the housing of the battery charger and local panels in the battery charger. Numerical analysis model is established based on resonant frequency search test results and validated by comparison with 2 types of earthquake testing results. ICRSs produced from the numerical model are compared with measured ICRSs in the seismic tests. Developed analysis model is a simple reduced model and anticipates ICRSs quite well as measured response in the tests overall despite of its structural limitation.