• Title/Summary/Keyword: Electric breakdown

Search Result 685, Processing Time 0.025 seconds

FIELD LIMITING RING WITH IMPROVED CORNER BREAKDOWN

  • Lee, sangyong;Lho, Younghwan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.847-850
    • /
    • 1998
  • This paper proposes a new scheme of FLR for improving corner breakdown voltage. The major difference from the conventional FLR is to build extra rings and floating field plates in the corner region. In this structure the additional field plate and ring have reduced th electric field at the junction in the corner region. Thus it improves the breakdown characteristics which are critical for obtaining high breakdown voltage.

  • PDF

Study on Electrical Characteristics According Process Parameters of Field Plate for Optimizing SiC Shottky Barrier Diode

  • Hong, Young Sung;Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.199-202
    • /
    • 2017
  • Silicon carbide (SiC) is being spotlighted as a next-generation power semiconductor material owing to the characteristic limitations of the existing silicon materials. SiC has a wider band gap, higher breakdown voltage, higher thermal conductivity, and higher saturation electron mobility than those of Si. When using this material to implement Schottky barrier diode (SBD) devices, SBD-state operation loss and switching loss can be greatly reduced as compared to that of traditional Si. However, actual SiC SBDs exhibit a lower dielectric breakdown voltage than the theoretical breakdown voltage that causes the electric field concentration, a phenomenon that occurs on the edge of the contact surface as in conventional power semiconductor devices. Therefore in order to obtain a high breakdown voltage, it is necessary to distribute the electric field concentration using the edge termination structure. In this paper, we designed an edge termination structure using a field plate structure through oxide etch angle control, and optimized the structure to obtain a high breakdown voltage. We designed the edge termination structure for a 650 V breakdown voltage using Sentaurus Workbench provided by IDEC. We conducted field plate experiments. under the following conditions: $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$. The experimental results indicated that the oxide etch angle was $45^{\circ}$ when the breakdown voltage characteristics of the SiC SBD were optimized and a breakdown voltage of 681 V was obtained.

Preliminary Tests on Change of Free Jet Flow in Laminar with Applying Electric Fields (교류 전기장이 인가된 층류 자유제트유동의 변화에 관한 예비 조사)

  • Kim, Gyeong Taek;Lee, Won June;Park, Jeong
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.383-386
    • /
    • 2014
  • The characteristics of gas free jet flows in laminar with having applied electric fields have been investigated experimentally. A single electrode configuration was adopted such that electric fields were applied directly to nozzle and thus the surrounding could be an infinite ground. The experimental results showed that breakdown point at laminar flow has been measured by varying the applied voltage and frequency of AC. The effect of applying electric fields to free jet flow in laminar was discussed in detail.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

Thermal Bubble-Initiated Breakdown Mechanism of $LN_2$ (액체질소에서의 열적 기포에 의한 절연파괴기구)

  • Kwak, Dong-Joo;Choo, Young-Bae;Ryu, Kang-Sik;Ryu, Wdd-Kyung;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.302-305
    • /
    • 1989
  • Ac, dc and impulse dielectric strengths of $LN_2$ at 0.1MPa were investigated experimentally, referring to the behavior of thermally induced bubble, which might be generated at quenching condition of immerged-cooling superconducting devices. The experimental results show that the bubble shape under electric field stress depends significantly on the applied voltage waveform. With ac voltage, the breakdown voltage of $LN_2$ falls suddenly near to one of the saturated gas at the threshold heater power of boiling onset. In control to this, the reduction of impulse breakdown voltage with heater peter is gradual and the time to breakdown depends on the existence of thermal bubble. These breakdown characteristics can be explained satisfactorily by the bubble behavior under electric fields.

  • PDF

An Analysis on Optimal Design and Electrical Characteristics of CT-IGBT(Circular Trench IGBT) (CT-IGBT의 최적 설계 및 전기적 특성에 관한 분석)

  • Kwak, Sang-Hyeon;Seo, Jun-Ho;Seo, In-Kon;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.22-23
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the Breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from p base and n drift junction to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction change of current path which pass through reversed layer channel.

  • PDF

Characteristics of lightning impulse preliminary breakdown discharge under non-uniform electric field in $SF_6/CO_2$ mixtures (불평등전장에서 $SF_6/CO_2$ 혼합기체의 뇌임펄스 전구방전특성)

  • Lee, B.H.;Oh, S.K.;Baek, Y.H.;Ahn, C.H.;Jeon, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2140-2142
    • /
    • 2005
  • This paper presents the experimental results on the preliminary breakdown characteristics under a highly non-uniform electric field in $SF_6/CO_2$ gas mixtures. The impulse preliminary breakdown developments are investigated by the measurements of corona current and light emission images. As a result, the preliminary breakdown development mechanisms for both positive and negative polarities are same. The first streamer corona is initiated at the tip of needle electrode, and the leaders develop with a stepwise propagation and bridge the test gap. The pause time of leader pulses in the positive polarity is significantly shorter than that in the negative polarity. Also, the time interval between the first streamer corona onset and breakdown in the negative polarity was much longer than that in the positive polarity The discharge channel paths in the positive polarity were zigzag. On the other hands, the leader channel in the negative polarity was thicker than that in the positive polarity.

  • PDF

An Analysis of IGBT(Insulator Gate Bipolar Transistor) Structure with an Additional Circular Trench Gate using Wet Oxidation (습식 산화를 이용한 원형 트렌치 게이트 IGBT에 관한 연구)

  • Kwak, Sang-Hyeon;Kyoung, Sin-Su;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.981-986
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from the junction of between p base and n drift to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction changed of current path which pass through reversed layer channel. The electrical characteristics were studied by MEDICI simulation results.

Breakdown Characteristics of SF6 in Different State and Bubble Movements under AC High-Voltage

  • Choi, Eun-Hyeok;Lim, Chang-Ho;Yoon, Dae-Hee;Park, Kwang-Seo;Kim, Lee-Kook;Lee, Kwang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.257-262
    • /
    • 2007
  • In this paper the experiments of breakdown characteristics by temperature change of $SF_6$ gas($GSF_6$), and $SF_6$ liquid ($LSF_6$) in model GIS (Gas Insulated Switchgear) are described. From the experiment's results, the breakdown characteristics classify the vapor stage of $SF_6$ according to Paschen's law, in which the gas & liquid coexisted stage of voltage value increases, resulting in much deviation and the breakdown of voltage ($V_B$) low stage as the interior of the chamber gets filled with a mixture of $SF_6$ that is not liquefacted and remaining air that cannot be ventilated. The ability of $LSF_6$ insulation is higher than the high-pressurized $SF_6$ gas. The breakdown characteristics of $LSF_6$ were produced by bubble formed evaporation of $LSF_6$ and bubbles caused by high electric emission. It is considered in this paper that the results are fundamental data for electric insulation design of superconductor and cryogenic equipments machinery that will be studied and developed in the future.