• Title/Summary/Keyword: Electric and magnetic property

Search Result 75, Processing Time 0.023 seconds

Impedence and Q-factor of frequence dependance accoding to ferrites on electrodeless fluorescent lamp (무전극 형광램프의 주파수에 따른 임피던스 및 Q-factor 변화 연구)

  • Pack, Gwang-Hyoen;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Jong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined resistance kind, impedance, Q-factor's frequency characteristic by ferrite. Impedance, resistance and capacitance did not show difference in start frequency 2.65 [MHz] but there was difference quantity. We could know Q-factor's difference according to material, and Q-factor's is important part of antenna design.

  • PDF

Torque characteristic analysis of Disk type Single phase SRM considering rotor position (회전자 위치에 따른 디스크형 단상 SRM의 토오크 특성 해석)

  • Lee, Jong-Han;Oh, Young-Woong;Lee, Eun-Woong;Lee, Min-Moung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.61-63
    • /
    • 1998
  • Disk type single phase SRM (DSPSRM) has a specific property of axial flux machine and radial flux machine simultaneously. So, this DSPSRM has a complicated magnetic circuit and it is difficult to analyze characteristics. Therefore, in this paper, the design specification of DSPSRM was calculated based on conventional design theory of electric machine and analyzed by 3D FEM. As the result of analysis, the approximated torque characteristics was obtained by finding the magnetic flux and energy distribution with the rotor position.

  • PDF

Controllable Squeeze Film Damper Using an Electromagnet (전자석을 이용한 가제어형 스퀴즈필름댐퍼)

  • 안영공;하종룡;양보석;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.510-513
    • /
    • 2003
  • The paper represents the stability of a rotor system with the squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically property of a conventional SFD and variable damping property according to variation of the applied electric current. Therefore, when the applied current controlled, the whirling vibration of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to changing the magnetic field strength. When the applied current increased, the whirling amplitude greatly reduced and the damping ratio also increased.

  • PDF

Controllable Squeeze Film Damper Using an Electromagnet (전자석을 이용한 가제어형 스퀴즈필름댐퍼)

  • 안영공;하종룡;양보석;김동조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • The paper represents stability of a rotor system with the squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically the property of a conventional SFD and variable damping property according to variation of the applied electric current. Therefore, when the applied current Is controlled, the whirling vibration of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to changing the magnetic field strength. As the applied current increased, damping ratios increased, while whirling amplitudes greatly reduced.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.6-9
    • /
    • 2011
  • Spin-motive force has drawn attention because it contains a fundamental physical property. Spin-motive force creates effective electric and magnetic fields in moving magnetization; a vortex is a plausible system for observing the spin-motive force because of the abrupt profile of magnetization. However, the time-averaged value of a spin-motive force becomes zero when a vortex core undergoes gyroscopic motion. By means of micromagnetic simulation, we demonstrates that a non-zero time-averaged electric field induced by spin-motive force under certain conditions. We propose an experimental method of detecting spin-motive force that provides a better understanding of spin transport in ferromagnetic system.

Study on the Compact MR fluid Brake for the Training and Sporting Equipment for Leg Rehabilitation (하지 재활운동치료 기구에 적용하기 위한 소형 MR 유체 브레이크에 관한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang;Kim, Il-Gyoum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2878-2885
    • /
    • 2012
  • In this study, the training and sporting equipment for leg rehabilitation featuring the MR fluids is proposed. The compact MR fluid brake is designed and manufactured to apply to the rehabilitation training and sporting mechanism. The resistance characteristic of the MR fluid brake is controllable by varying the magnetic field around the fluid. Under consideration of spatial limitation, design parameters which are related with the magnetic strength are determined to maximize to a torque using finite element method. The FE analysis is performed using a commercial code, ANSYS Workbench. The proposed brake device is manufactured, and its field-dependant torque is experimentally evaluated. When the electric current is supplied, the torque of the MR fluid brake is increased and the response is very fast. Depending on the strength of the current supply, torques of the MR fluid brake also increase similar to Bingham property of MR fluid.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Effects on the Magnetic Property Changes due to the defect in the Nuclear Reactor Vessel Material Irradiated by Fast Neutron (고속 중성자 조사에 의한 원자로 용기재료내의 결함생성이 자기적 특성변화에 미치는 영향)

  • Jeong, Myeong-Mo;Kim, Gil-Su;Jang, Gi-Sang;Yu, Geun-Bae;Park, Deok-Geun;Kim, Gil-Mu;Yun, In-Seop;Hong, Chi-Yu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1240-1244
    • /
    • 1999
  • In order to assess the effects on the magnetic properties due to the defect in the material irradiated by fast neutron ranging $10^0-10^{18}n/cm^2$, the magnetic properties such as maximum magnetic induction, coercivity, remanence, Barkhausen Noise Amplitude(BNA), Barkhausen Noise Energy(BNE) and hardness were measured. It is shown that the magnetic properties and hardness do not change by the fast neutron irradiation under $10^{17}n/cm^2$. Therefore, in this experiment, it is understood that the magnetic properties decrease by the increase of hardness. This measurement method can be used to evaluate the neutron irradiation embrittlement nondestructively since the magnetic properties and hardness do change by the neutron irradiation over $10^{17}n/cm^2$ consistently.

  • PDF