• 제목/요약/키워드: Electric and Heat energy

검색결과 601건 처리시간 0.026초

바닥재 냉각기 기포유동층의 기체-고체 연전달 분석 (Gas-Solid Heat Transfer Analysis of Bubbling Fluidized Bed at Bottom Ash Cooler)

  • 이규화;김동원;이종민;박경일;박병철
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.97-101
    • /
    • 2022
  • In this study we investigated the gas to solid heat transfer of bubbling fluidized bed bottom ash cooler installed at the Donghae power plant in South Korea. Several different analyses are done through 1-D calculations and 3-D CFD simulation to predict the bottom ash exit temperatures when it exits the ash cooler. Three different cases are set up to have consideration of unburnt carbon in the bottom ash. Sensible heat comparison and heat transfer calculation between the fluidization air and the bottom ash are conducted and 3-D CFD analysis is done on three cases. We have obtained the results that the bottom ash with unburnt carbon is exiting the ash cooler, exceeding the targeted temperature from both 1-D calculation and 3-D CFD simulation.

화력발전시스템 Heat and Mass Balance 최적설계 자동화기법 (Automation of Heat & Mass Balance Design Optimization Method for Power Plant)

  • 백세현;장지훈;김영주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.181-188
    • /
    • 2019
  • 본 연구에서는 발전시스템의 설계 입출력변수들을 Heat & Mass balance 계산 solver 및 최적화 알고리즘과 연계하고 반복계산 과정을 자동화함으로써 기술 및 경제적 측면을 고려한 최적의 발전시스템 Heat & Mass balance 설계를 도출하는 최적설계 자동화 기법을 개발하였다. 그리고 이에 대한 효과를 분석하기 위하여 발전소 형식별 10종에 대하여 최적설계 기법을 적용한 결과, NPV 및 IRR에 대한 개선 효과를 기대할 수 있었다.

습식온돌시스템과 전기온돌시스템의 열성능 평가 (Thermal Performance Assessment of Wet Ondol and Electric Ondol System)

  • 한병조;구경완
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

기기냉각수 폐열회수용 흡수식 히트펌프의 부분부하 성능에 관한 연구 (A Study on Partial Load Performance of Absorption Type Heat Pump for Waste Heat Recovery of Closed Cooling Water)

  • 박병철;김태형;김광수
    • 에너지공학
    • /
    • 제28권2호
    • /
    • pp.47-54
    • /
    • 2019
  • 복합화력발전소 에너지절감 사업으로 폐열회수용 흡수식 히트펌프가 설치됨에 따라 부분부하(Partial Load)에서의 성능 데이터 확인을 위해 성능시험을 실시하였다. 부분 부하에서 히트펌프 가동에 따른 운전 데이터 변화는 다음과 같다. 기기냉각수(CCW) 배열 및 배열회수열교환기(HRSG)로부터 공급되는 저압증기(LP STM)의 일부가 히트펌프의 열원으로 공급되므로 지역난방열 생산이 증대된다. 그러나 증기터빈으로 공급되는 저압증기의 유량감소에 따라 증기터빈 출력이 감소된다. 또한 고압 지역난방열교환기(HP-DH) 및 저압 지역난방열교환기(LP-DH)로 공급되는 고압터빈(HPT) 배기증기의 유량 저하에 따라 HP-DH 및 LP-DH의 열생산량도 감소한다. 부분부하에서는 정격부하 대비 히트펌프에 운전에 따른 터빈 출력 저하가 큰 것으로 나타났으며, 이에 따라 부분 부하에서는 발전소 전체의 열 생산 증가량, 전기출력 감소량을 종합적으로 고려하여 히트펌프 운전 여부를 결정해야 한다.

표면 열전달 저항이 배제된 건물 벽체 열성능 현장 측정 기법 (In-situ Measurement Technique for Thermal Performance of Building Wall Excluding Surface Heat Transfer Resistance)

  • 김승철;김상봉;나환선
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.151-155
    • /
    • 2020
  • In this paper, a new experimental method to determine the thermal resistance of building wall was proposed by improving the heat flow method (HFM) based on the air-surface temperature ratio theory. This technique measures the thermal resistance of the wall excluding the inner and outer surface heat transfer resistance. Unlike conventional HFM, this value can be compared directly with the theoretical reference value. Its performance was verified using three mock-up structures with a theoretical thermal transmittance of 0.5, 3.3, and 0.18 W/㎡·K respectively. After measuring the variations in the temperature and heat transfer rate of the mock-ups for 383 hours, the thermal transmittances were determined to be 0.47, 3.10, and 0.18 W/㎡·K, which corresponded to errors of 5.2, 6.2 and 0.5%, respectively, compared to the theoretical values. It was concluded that this technique can directly compare the thermal resistance of the wall between the existent stage and initial stage after construction.

가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증 (Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System)

  • 장지훈;한가람;박호영;이욱륜;허강열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발 (Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators)

  • 김용하;김승희;현승연
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.57-66
    • /
    • 2017
  • 열은 전력과 같이 이동속도가 빠르지 못하고 전력에 비해 손실이 비교적 크게 발생하므로 전력거래와 같이 한개의 운용센터를 두고 열 연계 시스템을 운용하는 것은 현실성이 없다. 현재 열 연계가 모두 이루어지고 있는 한국지역난방공사의 경우에도 인접한 2~4개 정도의 열병합발전소간에만 열 거래가 이루어지고 있는 실정이다. 따라서 본 논문에서는 열 거래를 위한 통합운용센터를 몇 개의 권역으로 나누어 각 권역마다 권역의 Hub 통합운용발전소를 두고 운용하는 것이 열매체의 특성을 반영하는데 적정하고 타당한 것으로 판단하여 집단에너지 사업자간 열 연계 메커니즘을 제안하였다. 제안된 메커니즘에 최적으로 열 거래를 행할 수 있는 알고리즘을 개발하고 이를 실제 사업자에 적용하여 제안한 알고리즘의 유용성을 검증하였다.

디젤발전 자켓냉각시스템 열성능 향상 연구 (Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation)

  • 이재근;문전수;윤석원;박필양
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

냉각탑을 이용한 축열식 히트펌프시스템의 성능측정에 관한 연구 (A study on performance test of water heat storage type heat-pump system using cooling tower heat source)

  • 이상훈;박효식;한우용;김욱중
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1099-1104
    • /
    • 2008
  • Recent year, mean energy consumptions of a people are higher than other country. And international oil price became over 120 dollar. This energy environment as well as energy war. Maybe, the Meteorological Administration is going to enforce scorching heatwave special report system from that come summer. Besides, 2008 summer, maximum demand power is expected by 64,240,000kW. The electric power equipment reserve rate appeared in to keep 12.5% level. Chilled water storage system witch is one of electric load administration system. Heat pump system used cooling tower heat recovery is advantage that use is possible to summer in small a public bath building. In this paper, we suggest that heat pump system by heat recovery using cooling tower when it is heating operation of ambient air temperature. To apply cooling tower heat recovery heat pump to chilled water heat storage type and achieved performance evaluation about operation. As a result, performance of heat pump system that about 121% in cooling mode, 138% in heating mode higher than KEPCO standard. And heating operation possible to ambient air temperature about $23^{\circ}C$, which of appear cooling tower outlet temperature about $13^{\circ}C$.

  • PDF