• Title/Summary/Keyword: Electric Vehicle charging

검색결과 315건 처리시간 0.104초

전기자동차 충전을 위한 2상 구동 시스템에 관한 연구 (2-phase drive for electric vehicle charging)

  • 전성즙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1-2
    • /
    • 2015
  • In this paper, a 2-phase feeder system for wireless vehicle charging is investigated, which generates moving magnetic field with nearly constant magnitude using 2-phase currents. A moving field is very useful to magnetizing pickups mounted on underneath of electric vehicles.

  • PDF

안티아일랜딩 기능을 적용한 전기자동차 충전계통 연계 스마트그리드 모니터링 시스템 개발 (Development of a Smart Grid Monitoring System with Anti-Islanding Function for Electric Vehicle Charging)

  • 노선희;신범식;이경중;기영훈;안현식
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.31-37
    • /
    • 2012
  • 본 논문에서는 무선 센서 네트워크를 활용하여 스마트그리드와 전기자동차의 충전 시스템 연계과정을 효과적으로 파악하고, 안티아일랜딩 기능을 적용하여 전기자동차 충전계통과 연계된 스마트그리드 모니터링 시스템을 제안한다. 스마트그리드 모니터링 시스템은 지그비(ZigBee)통신을 통해 무선으로 전력 모니터링 데이터를 수신하며, 별도의 물리적 연결 없이 원격 제어를 통해 전기자동차의 충전제어가 가능하다. 또한, 그리드 내 독립전원에 아일랜딩 현상이 발생하면, 아일랜딩 현상이 발생한 독립전원을 즉시 감지하여 차단하고 다른 독립전원으로 대체하여 그리드의 안정적인 운용을 하도록 하며, 실험을 통하여 스마트그리드 모니터링 시스템의 성능을 확인한다.

2MWh급 배터리 및 전기자동차 충전스테이션의 모델링 및 시뮬레이션 연구 (A Study on Modeling and Simulation of a 2MWh-Class Battery and Electric Vehicle Charging Station)

  • 김성동;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.68-70
    • /
    • 2021
  • 제주지역에 설치된 풍력발전기는 이미 제주지역의 공급량을 초과하여, 버려지고 있는 실정이다. 이에 정부는 기술개발 사업을 통해 2MWh급 ESS(energy storage system)를 설치하여 버려지는 전력을 충전하고, 전기자동차 충전스테이션에 활용하는 연구를 진행하고 있다. 본 논문에서는 2MWh급의 ESS를 안정적으로 설치하기 위해, Matlab Simulink를 이용하여 전기자동차 충전 모델과 ESS방전 모델을 모델링하고 시뮬레이션 하였다. 시뮬레이션을 통해, 2MWh급 ESS가 다양한 시나리오에서 안정적으로 동작하는 것을 검증하였다.

  • PDF

The smart EV charging system based on the big data analysis of the power consumption patterns

  • Kang, Hun-Cheol;Kang, Ki-Beom;Ahn, Hyun-kwon;Lee, Seong-Hyun;Ahn, Tae-Hyo;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2017
  • The high costs of electric vehicle supply equipment (EVSE) and installation are currently a stumbling block to the proliferation of electric vehicles (EVs). The cost-effective solutions are needed to support the expansion of charging infrastructure. In this paper, we develope EV charging system based on the big data analysis of the power consumption patterns. The developed EV charging system is consisted of the smart EV outlet, gateways, powergates, the big data management system, and mobile applications. The smart EV outlet is designed to low costs of equipment and installation by replacing the existing 220V outlet. We can connect the smart EV outlet to household appliances. Z-wave technology is used in the smart EV outlet to provide the EV power usage to users using Apps. The smart EV outlet provides 220V EV charging and therefore, we can restore vehicle driving range during overnight and work hours.

A Study on the Factors Influencing the Purchase of Electric Vehicles

  • Kim, Sung Young;Kang, Min Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.194-200
    • /
    • 2022
  • As of 2020, the cumulative number of electric vehicles worldwide increased 43% from 2019, exceeding 10 million. We surveyed and analyzed important factors when purchasing electric vehicles for consumers who own electric vehicles. Through this, we tried to find an effective way to supply electric vehicles in the future. The purpose of this study is to present customized marketing proposals for companies by empirically analyzing the factors affecting consumers' electric vehicle purchases and deriving market demands for electric vehicles. We identified the market status of electric vehicles through literature research and reviewed previous studies on the factors affecting the purchase intention of electric vehicles. Through empirical studies, differences in electric vehicle purchase factors according to gender, age, and the degree of importance of performance were analyzed. To this end, the SPSS statistics package was used. Factors influencing the purchase of electric vehicles were set to mileage, charging time, new technology, degree of driving autonomous development, design, price, infrastructure for charging, the phase of maintenance and repair, by the government and local governments. In addition, the most important factors were derived, and the average difference analysis was conducted according to gender, age, and performance importance.

전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계 (Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging)

  • 그레이스;손동호;이동희;안진우
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

중앙제어기반 전기자동차 충전시스템의 에너지관리 알고리즘에 관한 연구 (A Study on the Power Management Algorithm of Centralized Electric Vehicle Charging System)

  • 도반콴;이성준;이재덕;배정효
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.566-571
    • /
    • 2011
  • As Plug-in Hybrid Vehicle and Electric Vehicle (PHEV/EV) take a greater share in the personal automobile market, their high penetration levels may bring potential challenges to electric utility especially at the distribution level. Thus, there is a need for the flexible charging management strategy to compromise the benefits of both PHEV/EV owners and power grid side. There are many different management methods that depend on the objective function and the constraints caused by the system. In this paper, the schema and dispatching schedule of centralized PHEV/EV charging spot network are analyzed. Also, we proposed and compared three power allocation strategies for centralized charging spot. The first strategy aims to maximize state of vehicles at plug-out time, the rest methods are equalized allocation and prioritized allocation based on vehicles SoC. The simulation results show that each run of the optimized algorithms can produce the satisfactory solutions to response properly the requirement from PHEV/EV customers.

전기자동차 주차 및 충전을 위한 지하주차장 계획연구 (Underground parking lot planning study for electric vehicle charging and parking)

  • 진경일;문진우
    • KIEAE Journal
    • /
    • 제13권6호
    • /
    • pp.39-44
    • /
    • 2013
  • As the use of electric vehicles perspectively increases, infrastructures for charging car batteries need to be properly planned for satisfying new requirements. This study aimed at theoretically investigating the relative laws, size of existing parking lots, and diverse car sizes for suggesting parking places for electric vehicles. In addition, potential problems for changing existing parking lots to new parking lots for electric vehicles were thoroughly considered. Based on the problem recognition, the feasibility, in particular, of the change of existing parking place to new place equipped with electricity charging systems was investigated. The comprehensive reviews and surveys revealed that additional systems for charging electricity need to be developed to be suspended on the ceiling for existing parking lots in order to prevent changing current layout of the space. This system will alleviate the perspective problems when the charging systems are located on the floor such as contamination, electric shock, and damage by cars. Further study will be followed for testing performance of the suggested systems in the actual parking lots.

서울시 최적의 전기자동차 충전소 위치 선정 (Optimal Selection of Electric Vehicles' Charging Station Location in Seoul)

  • 김장영
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1575-1580
    • /
    • 2017
  • 전기자동차 사업은 수도권에 발생하는 미세먼지의 30%를 감소시킬 수 있는 중요한 사업이고, 인체 위해도가 높은 자동차 배출가스를 내연기관에서 친환경 전기자동차로 대체하여 대기오염 문제를 획기적으로 해결할 수 있다. 이러한 전기자동차 사업의 핵심인 충전인프라 구축과 관련하여 서울시 내의 전기자동차 충전소 최적의 위치를 선정하고자 한다. T-Map 네비게이션 사용자 데이터 (위도, 경도, 위치) 분포와 서울시 교통정책과의 교통량 통계를 이용하였고, 최적의 위치에 전기자동차 충전소를 배치하고, 효율을 높이는 것에 본 논문의 목적이 있다. 본 논문에서 제안한 알고리즘은 두 가지 충전소 위치 선정 방식을 포함한다. 첫 번째는 교통량 및 권역을 이용한 방식이고, 두 번째는 T-Map 데이터 분포를 이용한 방식이다. 실제 충전소 위치 선정 시 두 가지 방식을 모두 고려하여 선정하게 된다.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF