• Title/Summary/Keyword: Electric Vehicle charging

Search Result 316, Processing Time 0.027 seconds

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

The Research about Analyzing the Charging Pattern using the Electric Vehicle Running Feature Simulation (전기자동차 운행특성 모의를 통한 충전패턴 분석에 관한 연구)

  • Lim, You Seok;Bang, Chang Hyun;Han, Seung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.205-214
    • /
    • 2013
  • In this paper, we analyzed the various EV charging-infra information(charging status, charging pattern, charging rate, charging fee, etc.) through the charging infra simulator which would be of help to effectively construct the EV charging infrastructure. The proposed simulator virtually made the EV motoring pattern referred to TMS(Traffic Monitoring System) & Ministry of Land, Transport and Maritime Affairs, and analyzed the charging-infra information(amount of charging, accumulated charging fee, etc.) based on vehicle types, charging type, time and days using EV charging-fee list noticed by KEPCO. Through this simulator, we deducted some considerable contents to build the EV charging infrastructure similarly with real environment.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

A Study on Energy Optimization Algorithm of Electric Vehicle Charging System (전기자동차 충전시스템의 에너지 최적화 알고리즘에 관한 연구)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.369-374
    • /
    • 2018
  • In this paper, the energy cost saving in multi-channel electric vehicle charging system. Joint use of the electric car charger battery state of charging proposed a method based charging. A linear programming with two type is used for optimal control, and the time-of-use price is included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed method.

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

A Study on Communication Controller of Electric Vehicle Supply Equipment for Information Exchange between Electric Vehicle and Power Grid (전기차와 전력계통의 정보교환을 위한 전기차 충전장치의 통신 제어기에 대한 연구)

  • Han, Ah;Shin, Minho;Kim, Intaek;Jang, Hyuk-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1564-1570
    • /
    • 2014
  • An electric vehicle (EV) not only receives electric power from the electric vehicle supply equipment (EVSE), but it also exchanges the information regarding charging process with the power gird through the EVSE. However, the EV and EVSE communicate using the ISO/IEC 15118 standard while the EVSE and power grid communicate using the IEC 61850 standard. Therefore, the EVSE should support both the ISO/IEC 15118 and IEC 61850 standards, and provide a data mapping function between the two communication protocols so that the EV and power grid, which support different protocols, can communicate with each other throughout the charging process. In this paper, we propose a mapping method of the EVSE, which converts the ISO/IEC 15118 data to IEC 61850 and vice versa, based on the XML schema of each protocol. The proposed method converts the data using the XSL (eXtensible Stylesheet Language) method, which defines the data mapping between two XML schemas. Our approach is more flexible and easier to maintain against changes in charging scenarios and the standards than other existing approaches such as one-to-one data mapping methods.

Optimal Scheduling of Level 5 Electric Vehicle Chargers Based on Voltage Level

  • Sung-Kook Jeon;Dongho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.985-991
    • /
    • 2023
  • This study proposes a solution to the voltage drop in electric vehicle chargers, due to the parasitic resistance and inductance of power cables when the chargers are separated by large distances. A method using multi-level electric vehicle chargers that can output power in stages, without installing an additional energy supply source such as a reactive power compensator or an energy storage system, is proposed. The voltage drop over the power cables, to optimize the charging scheduling, is derived. The obtained voltage drop equation is used to formulate the constraints of the optimization process. To validate the effectiveness of the obtained results, an optimal charging scheduling is performed for each period in a case study based on the assumed charging demands of three connected chargers. From the calculations, the proposed method was found to generate an annual profit of $20,800 for a $12,500 increase in installation costs.

Technology Development Trend of Domestic and Foreign Electric Vehicle and Technology Development Strategy of Domestic Electric Vehicle Core Parts (국내외 전기자동차 기술 개발 동향 및 국내 전기자동차 핵심 부품 기술 개발 전략)

  • Son, Younh-Wook;Huh, Gun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • The electric vehicle market has increased rapidly in recent years. Established global automakers have announced that electric cars will be developed and distributed. Furthermore, current electric cars are not merely breezes, instead, they are the mainstream of automobiles. However, high prices, short mileage, and long charge times are the main obstacles to the spread of electric vehicles. To solve these problems, the competition for technology development for the expansion of electric vehicles worldwide intensifies because of the improvements in mileage, price reduction, and expansion of charging infrastructure. In this paper, the trends in the development of key technologies for electric vehicles in overseas markets and the present strategic goals for the development of key technologies for electric vehicles in Korea will be identified.

A study on the application of urban railway DC electric power for electric car charging system (전기차 충전시스템을 위한 도시철도 DC 전력의 활용방안 연구)

  • Kang, Hyun-Il;Kin, Youn-Sik;Sim, Jae-Suk;Im, Hyeong-Gil;Ryu, Ki-Seon;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1855-1860
    • /
    • 2010
  • Electric vehicles have reached a new level of development with introductions by Chrysler, Ford, Honda and Toyota. Today's charging technology includes conductive and inductive charging systems. There are three standardized charging levels: Level 1: charging can be done from a standard, grounded AC 120V, 3-prong outlet available in all homes; Level 2: charging is at AC 240V, 40 amp charging station with special consumer features to make it easy and convenient to plug in and charge EVs at home or at an EV charging station; Level 3: a high-powered charging "fast charge" technology currently under development that will provide a charge in less than 15 minutes. The incoming AC power is converted to DC and stored in the vehicle's batteries. In this paper, we investigated the application of urban railway DC electric power for electric car charging system.

  • PDF