• Title/Summary/Keyword: Electric Torque

Search Result 639, Processing Time 0.026 seconds

Nonlinear Control of Torque and Speed of S.I.Engines Using Electric Throttle Control (트로틀 앵글 제어에 의한 내연기관의 토오크 및 속도의 비선형 제어)

  • 원문철;강병배;박문수;김태영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.72-81
    • /
    • 1999
  • A nonlinear engine torque and speed control algorithm using throttle angle control is developed with an engine load torque estimation algorithm. Three 3-dimensional nonlinear engine maps as a part of the nonlinear control algorithm are obtained from steady state engine dynamometer tests. An electric throttle actuator is developed using a stepper motor and a 8 bit micro-processor. The speed control and external load estimation algorithm are tested via engine speed control experiments, and show performance good enough for using various engine torque and speed control applications.

  • PDF

A Study on Torque Transmission Using Electro-Rheological Fluid (전기점성 유체를 이용한 동력전달 장치에 관한 연구)

  • 주동우;이은준;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.81-87
    • /
    • 1998
  • This paper provides an investigation of torque transmission system using ERF (Electro-Rheological Fluid). The torque transmission system using ERF is a new conception device because an apparent viscosity of ERF can be changed by applying an electric field, We use the coaxial cylinder type in which the ERF fills the annular space between a pair of coaxial cylindrical electrodes and experiment results show that the measured torque was increased with the increase of the electric field. These are analyzed to provide guidelines to assist in the development of practical ER devices.

  • PDF

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

Precision Speed Control of PMSM Using Neural Observer (Neural Observer를 이용한 PMSM의 정밀 속도 제어)

  • Ko Jong-Sun;Lee Yong-Jae;Lee Tae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.53-56
    • /
    • 2002
  • This paper presents neural observer that used to deadbeat load torque observer. Most practical systems are nonlinear, and it is general practice to use linear models to simplify their analysis and design. However, the locally linearized model is invalid for a large signal change. The neural observer is suggested to increase the performance of the load torque observer and main controller The output error and estimeted state is trianed by neural network of neural observer. As a result, the state estimation error is minimised and deadbeat load torque observer make use of corrected esimation state. To reduce of the noise effect of deadbeat load torque observer, the post-filter which is implemented by MA process, is adopted. As a result, the proposed control system becomes a robust and precise system against the load torque. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Principle of Design and Performance of the Torque Sensor for a Electrical Power Steering (전동식 파워스티어링(EPS)용 토크센서의 설계원리와 성능테스트)

  • Lee Eung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.121-126
    • /
    • 2005
  • This paper describes the attributes, performance and development status of a high performance capacitive torque sensor intended for use in a electric power steering (EPS) system. The EPS system is composed of torque sensor, ECU, motor, gears and etc. Among the elements, torque sensor in the steering column is one of the core technologies. The new capacitive torque sensor in this paper is developed differently from working principle and mechanical structure compare to extant torque sensors in market and patent. Based on the result of numerical analysis, a experimental equipment is made which is composed of a test jig and a capacitive sensor and validity of numerical analysis and feasibility of the torque sensor are verified.

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

Impulse Response of Electric Power Steering System (전동식 조향 시스템의 임펄스 응답 특성)

  • Pang D.Y.;Jang B.C.;Lee S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1483-1488
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering(EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in this paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can' satisfy both requirements.

  • PDF