• Title/Summary/Keyword: Electric Tool

Search Result 542, Processing Time 0.024 seconds

Conceptual Design Strategy of Renewable Energy Application for Building Certification and Mandatory System (신재생에너지설비 건물설치 의무화 및 인증제를 고려한 용량설계 방안)

  • Lee, Kyoung-Ho;Lee, Dong-Won;Kown, Hyeok-Min;Lee, Chang-Jun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99-104
    • /
    • 2011
  • This paper describes a design strategy at conceptual design stage using RETScreen software tool for building application of renewable energy resources. Currently, government and public buildings are required to adopt renewable energy systems with a minimum requirement for the amount of renewable energy supply. Meanwhile, there is a certificate program for private office buildings to enhance propagation of renewable energy systems. When considering application of renewable energy systems to a building, it is worthwhile developing a method to determine optimal design sizes of renewable energy systems. In the paper, a design strategy is introduced with a couple of case studies to determine optimal capacities of each renewable energy system in a building and suggest to use the method to evaluate the system for the building certificate program and the mandatory renewable target program. Objective functions considered in the study are initial system cost and reduction of CO2 emissions from the system. In the optimization study, it is assumed that solar thermal collectors are installed to satisfy solar fraction of 60%. Other renewable energy systems such as ground-source heat pump, solar PV and non-renewable systems such as electric chiller and gas-fired boiler are sized using an optimal sizing method with RETScreen suggested the authors previously.

  • PDF

Performance Analysis of Assembly Tools for Modular House (모듈러주택 조립을 위한 조립공구의 성능분석)

  • Kim, Tae-Yeong;Kim, Seok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.143-150
    • /
    • 2016
  • Modular house is built by assembling various joints. Module assembly in the stage of on-site installation is very important process, because assembly process directly affects the structural stability and the quality. However, manual tools and electric-powered tools have a problem in that assembly productivity and quality are reduced during long-time usage. Although pneumatic assembly tools for modular house have been developed, but empirical analysis to compare and evaluate the performance of tools has not been sufficient. This study compares and analyzes the assembly quality and productivity by applying existing assembly tools and new pneumatic tools to the field. The analysis results show that pneumatic assembly tools are more excellent in terms of assembly productivity and quality.

MOEPE: Merged Odd-Even PE Architecture for Stereo Matching Hardware (MOEPE: 스테레오 정합 하드웨어를 위한 Merged Odd-Even PE구조)

  • Han, Phil-Woo;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, we propose the new hardware architecture which implements the stereo matching algorithm using the dynamprogrammethod. The proposed MOEPE(Merged Odd-Even PE) architecture operates in the systolic manner and finds the disparities form the intensities of the pixels on the epipolar line. The number of PEs used in the MOEPE architecture is the same number of the range constraint, which reduced the nuMber of the necessary PEs draMatically compared to the traditional method which uses the PEs with the same number of pixels on the epipolar line. For the normal sized images, the numof the MOEPE architecture is less than that of the PEs in the traditional method by 25${\times}$The proposed architecture is modeled with the VHDL code and simulated by the SYNOPSYS tool.

  • PDF

Driving Performance Simulation of Mining Robot for SMS deposits (해저열수광상 채광 로봇의 해저면 주행성능 시뮬레이션)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Hong, Sup;Kim, Sung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.80-86
    • /
    • 2013
  • KIOST developed a deep-sea mining robot called "MineRo" to collect manganese nodules in 2007. MineRo operates on flat ground. SMS (seafloor massive sulfide) deposits are shaped like undulating mountains. This paper deals with a numerical analysis model of a mining robot for SMS deposits. The mining robot consists of a tracked vehicle, chassis structure with a turntable, boom arm with 2 articulations, excavation tool, discharging unit, hydro-electric system, and sensing-and-monitoring system. In order to compare and analyze the dynamic responses of the driving mechanism, various tracked vehicles are modeled using commercial software. Straight driving simulations are conducted under undulating ground conditions. A conceptual design of a mining robot with four track systems for SMS deposits is modeled on the basis of these results.

Modeling of Crosstalk Behaviors in Thermal Inkjet Print Heads (열 잉크젯 프린트헤드의 채널간 간섭현상의 모델링)

  • Lee, You-Seop;Sohn Dong-Ki;Kim Min-Soo;Kuk Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.141-150
    • /
    • 2007
  • This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of connecting channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model on the meniscus oscillations are consistent with numerical simulation results. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. The degree of crosstalk has been quantified using cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed and validated with the numerical simulations. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

Composite $BaTiO_3$ Embedded capacitors in Multilayer Printed Circuit Board (다층 PCB에서의 $BaTiO_3$ 세라믹 Embedded capacitors)

  • You, Hee-Wook;Park, Yong-Jun;Koh, Jung-Hyuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • Embedded capacitor technology is one of the effective packing technologies for further miniaturization and higher performance of electric packaging system. In this paper, the embedded capacitors were simulated and fabricated in 8-layered printed circuit board employing standard PCB processes. The composites of barium titanante($BaTiO_3$) powder and epoxy resin were employed for the dielectric materials in embedded capacitors. Theoretical considerations regarding the embedded capacitors have been paid to understand the frequency dependent impedance behavior. Frequency dependent impedance of simulated and fabricated embedded capacitors was investigated. Fabricated embedded capacitors have lower self resonance frequency values than that of the simulated embedded capacitors due to the increased parasitic inductance values. Frequency dependent capacitances of fabricated embedded capacitors were well matched with those of simulated embedded capacitors from the 100MHz to 10GHz range. Quality factor of 20 was observed and simulated at 2GHz range in the 10 pF embedded capacitors. Temperature dependent capacitance of fabricated embedded capacitors was presented.

Development of an Evaluation Method and Support Policy for the Green Home Project (친환경주택평가기법개발 및 지원방안에 관한 연구)

  • Lee, Jong-Sung;Yoo, Jung-Hyun;Rhim, Joo-Ho;Kim, Hyo-Jin
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • The energy consumption of residential sectors is given a sizable portion in total energy consumption. So, improvement of building performance can be as a part of principal energy strategy. For this reason, an evaluation tool for estimation of energy consumption was developed and supportive policies were considered in this study. In particular, energy saving technology were examined to practice the green home project, among them 7 items were selected as a factor for estimating energy consumption. In addition, to the simulation study on energy consumption, heating load, hot water demand and electric consumption was also studied with actual measured value. Further more, several supportive policies were discussed to encourage green home project in Korea.

A Study on Variation of the Dynamic Characteristic of Supply Voltage According to the Track Environment and Spatial Distribution as Driving of Urban Transits (도시철도차량의 운행 선로환경 및 공간적 분포에 따른 공급전압 동특성 변화)

  • Kim, Yang-Su;Chang, Chin-Young;Lee, Ki-Sik;Koo, Kyung-Wan;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1380-1386
    • /
    • 2012
  • It is important to consider supply voltage stability in case of design and construction of a substation at electric railway because a urban transit is operated by electricity and it is driven simultaneous in the same section. This paper study on variation of the dynamic characteristic of supply voltage according to the track environment and spatial distribution as driving of urban transits. Simulation tool, TOM(Train Operations Model) software is used to ensure stability of feeder system being used around the world. As results of simulation, voltage of the contact wire is in limits on driving operation diagram of urban transits. Also, it has confirmed that there is a correlation the phase current, depending on the speed of urban transit and track environment like vertical gradients and curve radius.

Physics of Solar Flares

  • Magara, Tetsuya
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.1-25.1
    • /
    • 2010
  • This talk outlines the current understanding of solar flares, mainly focusing on magnetohydrodynamic (MHD) processes. A flare causes plasma heating, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes related to a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), formation of current-concentrated areas (current sheets) in the corona, and magnetic reconnection proceeding in current sheets that causes shock heating, mass ejection, and particle acceleration. A flare starts with the dissipation of electric currents in the corona, followed by various dynamic processes which affect lower atmospheres such as the chromosphere and photosphere. In order to understand the physical mechanism for producing a flare, theoretical modeling has been developed, in which numerical simulation is a strong tool reproducing the time-dependent, nonlinear evolution of plasma before and after the onset of a flare. In this talk we review various models of a flare proposed so far, explaining key features of these models. We show observed properties of flares, and then discuss the processes of energy build-up, release, and transport, all of which are responsible for producing a flare. We come to a concluding view that flares are the manifestation of recovering and ejecting processes of a global magnetic flux tube in the solar atmosphere, which was disrupted via interaction with convective plasma while it was rising through the convection zone.

  • PDF