• Title/Summary/Keyword: Electric Tool

Search Result 541, Processing Time 0.029 seconds

Research of generate a test case to verify the possibility of external threat of the automotive ECU (차량 ECU의 외부 위협성 가능성을 검증하기 위한 테스트 케이스 생성 연구)

  • Lee, Hye-Ryun;Kim, Kyoung-Jin;Jung, Gi-Hyun;Choi, Kyung-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.21-31
    • /
    • 2013
  • ECU(Electric Control Unit) on the important features of the vehicle is equipped, ECU between sending and receiving messages is connected to one of the internal network(CAN BUS), but this network easily accessible from the outside and not intended to be able to receive attacks from an attacker, In this regard, the development of tools that can be used in order to verify the possibility of attacks on attacks from outside, However, the time costs incurred for developing tools and time to analyze from actual car for CAN messages to be used in the attack to find. In this paper, we want to solve it, propose a method to generate test cases required for the attack is publicly available tool called Sulley and it explains how to find the CAN messages to be used in the attack. Sulley add the CAN messages data generated library files in provided library file and than Sulley execute that make define and execute file conform to the CAN communication preferences and create message rules. Experiments performed by the proposed methodology is applied to the actual car and result, test cases generated by the CAN messages fuzzing through Sulley send in the car and as a result without a separate tool developed was operating the car.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Broadband Multi-Layered Radome for High-Power Applications (고출력 환경에 적용 가능한 광대역 다층 구조 레이돔)

  • Lee, Ki Wook;Lee, Kyung Won;Moon, Bang Kwi;Choi, Samyeul;Lee, Wangyong;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.

An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap (제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구)

  • Park, Kigon;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.1-30
    • /
    • 2021
  • Due to the recent development of system semiconductors, technical innovation for the electric devices of the automobile industry is rapidly progressing. In particular, the electric device of automobiles is accelerating technology development competition among automobile parts makers, and the development cycle is also changing rapidly. Due to these changes, the importance of strategic planning for R&D is further strengthened. Due to the paradigm shift in the automobile industry, the Product-Technical Roadmap (P/TRM), one of the R&D strategies, analyzes technology forecasting, technology level evaluation, and technology acquisition method (Make/Collaborate/Buy) at the planning stage. The product-technical roadmap is a tool that identifies customer needs of products and technologies, selects technologies and sets development directions. However, most companies are developing the product-technical roadmap through a qualitative method that mainly relies on the technical papers, patent analysis, and expert Delphi method. In this study, empirical research was conducted through simulations that can supplement and strengthen the product-technical roadmap centered on the automobile industry by fusing Gartner's hype cycle, cumulative moving average-based data preprocessing, and deep learning (LSTM) time series analysis techniques. The empirical study presented in this paper can be used not only in the automobile industry but also in other manufacturing fields in general. In addition, from the corporate point of view, it is considered that it will become a foundation for moving forward as a leading company by providing products to the market in a timely manner through a more accurate product-technical roadmap, breaking away from the roadmap preparation method that has relied on qualitative methods.

A Study on a Precision Temperature Control for Oil cooler using ON/OFF Control Method (ON/OFF 제어방식 오일쿨러의 정밀온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. In this paper, the compressor's speed are controlled to keep reference value of temperature at oil outlet. The precision processing of a machine tool is required for an oil cooler guaranteeing ${\pm}0.1^{\circ}C$ temperature control. But the oil cooler with precision temperature control is expensive. Therefore in this paper, instead of a on/off(relay) control method, a PID and phase angle electric power control method is proposed for the precision control of an oil cooler. The proposed controller is implemented and tested at the temperature of $23^{\circ}C$, $24^{\circ}C$ and $25^{\circ}C$.

Simple Miniaturization Method of a Microstrip Patch Antenna (마이크로스트립 패치 안테나의 효율적 소형화 기법)

  • 이병제;이호준;강기조;김남영;이종철;김종환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.920-928
    • /
    • 2000
  • In this paper, using newly proposed size reduction technique, the aperture coupled microstrip patch antenna for a repeater system in a mobile communication cellular band (824~849 MHz) is developed with a wide bandwidth, small size, light weight, and low cost. The resonant frequency of microstrip antennas is related to the electric field distribution of the radiating patch. The field strength of $TM_{01}$ mode of a rectangular patch antenna is strongest at each of the extremities of the radiating patch, but negligible at center. Therefore, the size of a patch antenna can be effectively minimized by inserting the narrow rectangular dielectric into just under the edges of the resonant Patch. This Paper also proposes the bandwidth improvement technique by using under-coupling technique with a tuning stub. The VSWR is less than 1.5 : 1 for the whole cellular band. The simulation tool was HFSS, Agilent Technologies, Inc.

  • PDF

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

A Study of Stator Fault Detection for the Induction Motor Using Axial Magnetic Leakage Flux (축방향 누설자속 측정에 의한 유도전동기의 고정자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.131-137
    • /
    • 2005
  • The purpose of this paper is to evaluate the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algerian for the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency bases to detect the failure of the motor. Specific signature can be described in time and frequency domain for each faults of the motor. The spectrum of the signal was found more useful for the monitoring purpose. The supply voltage imbalance and tin to turn failure of the stator winding could be detected by analysing the specific sidebands of the axial flux and sideband of the rotor bar pass frequency with the high resolution spectrum. The goal of this study verity that the axial flux measurement for the induction motor is a powerful tool for the diagnostic method and develope the algorithm to detect the fault.

Single Carrier Spectroscopy of Bisolitons on Si(001) Surfaces

  • Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.13-13
    • /
    • 2010
  • Switching an elementary excitation by injecting a single carrier would offer the exciting opportunity for the ultra-high data storage technologies. However, there has been no methodology available to investigate the interaction of low energy discrete carriers with nano-structures. In order to map out the spatial dependency of such single carrier level interactions, we developed a pulse-and-probe algorithm, combining with low temperature scanning tunneling microscopy. The new tool, which we call single carrier spectroscopy, allows us to track the interaction with the target macrostructure with tunneling carriers on a single carrier basis. Using this tool, we demonstrate that it is possible not only to locally write and erase individual bi-solitons, reliably and reversibly, but also to track of creation yields of single and multiple bi-solitons. Bi-solitons are pairs of solitons that are elementary out-of-phase excitations on anti-ferromagnetically ordered pseudo-spin system of Si dimers on Si(001)-c(42) surfaces. We found that at low energy tunneling the single bisoliton creation mechanism is not correlated with the number of carriers tunneling, but with the production of a potential hole under the tip. An electric field at the surface determines the density of the local charge density under the tip, and band-bending. However a rapid, dynamic change of a field produces a potential hole that can be filled by energetic carriers, and the amount of energy released during filling process is responsible for the creation of bi-solitons. Our model based on the field-induced local hole gives excellent explanation for bi-soliton yield behaviors. Scanning tunneling spectroscopy data supports the existence of such a potential hole. The mechanism also explains the site-dependency of bi-soliton yields, which is highest at the trough, not on the dimer rows. Our study demonstrates that we can manipulate not just single atoms and molecules, but also single pseudo-spin excitations as well.

  • PDF

Feasibility Study of a Verification Tool for the Treatment of Cervical Intraepithelial Neoplasia Using Relative Electrical Property Change Before and After Laser Irradiation (레이저 조사 전후 자궁경부조직의 상대적 전기물성 스펙트럼 변화를 이용한 자궁경부 이형성증 치료검증도구의 가능성 평가)

  • Jun Beom, Heo;Tingting, Zhang;Tong In, Oh;Dong Choon, Park
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.409-416
    • /
    • 2022
  • Since the detection of cervical intraepithelial neoplasia (CIN) is increasing due to regular cervical cancer screening, there is a high demand for simpler tools to diagnose and treat CIN in the clinic. In this study, we proposed an electric property of cervical tissue to verify treatment using a laser. At first, we observed the depth and width of ablated cervical tissues for 29 samples according to four different pulse energy of the fractional CO2 laser to find enough pulse energy to reach the basement layer for initiated CIN. And then, the relative frequency differences in impedance spectrum before and after laser irradiation for ten non-CIN samples were collected using bioimpedance spectroscopy with a multi-electrode probe. As a result, the laser ablated the cervical tissues with a depth of more than 300 ㎛ at 100 mJ pulse energy. Also, we confirmed that the relative changes of electrical property for cervical tissue increased as the pulse energy of laser output increased, and the variation between samples decreased. Since the relative change in electrical properties of cervical tissue can be easily and quickly measured, the proposed technique paves the way for further verification and follow-up study of laser treatment for CIN.