• 제목/요약/키워드: Electric Railway

검색결과 1,093건 처리시간 0.027초

전철용 공랭식 정류기 성능 향상방안에 관한 연구 (Research on improvement performance of air-cooled rectifier for Electric railway)

  • 한학수;최병운;배상만;김찬식;김영은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1489-1497
    • /
    • 2009
  • The rectifier for Electric railway is one of the most important facilities in DC urban railway which converts power from KEPCO(AC 22.9kV) to the electric mil car(DC 1.5kV), therefore it should be managed as the best condition for the drive. There are several things to cause performance degradation and deterioration of parts such as pollutants occurred by it established under the ground such as dust or foreign substances, rapid changes of driving current, and pyrogen which put the rectifier for Electric railway in malfunction. On the flow of time, the rectifier for Electric railway is causing a malfunction or failure which drive electric rail car in operations as well as loss of life. In this research we try to find the way of removing the various components of mal-functions in the performance of the rectifier for Electric railway by Over-Haul and reform itself, which gives us to get the chance investment of the reduction, the reliability of power supply to the electric rail car.

  • PDF

BESS 모델링 및 전기철도 급전계통에의 전압보상 적용 (BESS Modeling and Application to Voltage Compensation of Electric Railway System)

  • 유형준;손호익;김학만
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

IEC 61850과 IEC 61970을 표준으로 하는 전철변전소 종합자동화 모델에 관한 연구 (A Study on the Model of A Electric Railway Substation Automation Based on IEC 61850 and IEC 61970)

  • 고중구;장우진;최규형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1014-1019
    • /
    • 2011
  • The substation automation is a system to remote-monitor and control electric power flow. And in line with electrification of railway, an interest in electric railway substation automation is increasing. IEC standardized IEC 61850, IEC 61968 and IEC 61970 communication protocol for the telecommunication standardization of the electric power automation industry. The recent SCADA systems in managed electric railway substations are have the problem about the compatibility with the products which fit to the international standard specification afterward. In this paper, the model of electric railway substation automation based on IEC 61850 and IEC 61970 is presented. And the method supporting the compatibility between the equipment is proposed.

  • PDF

교류 전기철도 시스템의 해석에 적합한 조류계산 기법 및 STATCOM을 적용한 전압 강하 개선 연구 (A Study on a New Power Flow Method for Analysis of AC Electric Railway System and Improvement of Voltage Drop Using a STATCOM)

  • 백정명;이병하
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.669-676
    • /
    • 2007
  • This paper presents a new power flow method to analyze the AC electric railway system effectively in both cases of traction and regenerative braking of the trains. The algorithm to easily solve the power flow of the AC electric railway system with the trains of regenerative braking from the system without a train of regenerative braking is derived. Using this new power flow method, the voltage characteristics of a typical AC electric railway system is easily analyzed in both cases of traction and regenerative braking of the trains. We show that the presented method can be applied effectively in order to analyze the AT-fed AC electric railway system in both cases of traction and regenerative braking of the trains. A STATCOM(Static Synchronous Compensator) is applied to the system in order to improve the voltage drop problem and this case is also analyzed to show the effect of STATCOM.

PSCAD/EMTDC를 활용한 COMTRADE 기반의 교류철도 급전계통 사고 데이터 분석에 관한 연구 (A Study of Analysis of Fault Data in AC Electrical Railway Power System Based on COMTRADE Using PSCAD/EMTDC)

  • 이지혜;민명환;안태풍;이병곤
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1542-1548
    • /
    • 2018
  • When any faults occurred in electrical railway system, operators need to analysis it quickly and accurately. Existing COMTRADE based analysis tools are not enough to analysis faults occurred in electrical railway system. In this paper, it presents some functions to fault analysis for electrical railway system based on fault data formatted COMTRADE. These functions are implemented in PSCAD/EMTDC and it can be shown that analyzed results against actual electrical fault cases which were occurred in the electrical railway power system.

도시철도 DC 급전시스템 해석 모델 개발 (Development of Analysis Model for Metro Railway DC Electric Power System)

  • 차준민;김형철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1411-1417
    • /
    • 2006
  • The DC electric power system is the most important power source in a metro railway system. As metro railway system is expanded recently, the importance of DC electric power system is emphasized. Furthermore, the study for systemization and standardization of design and operation technique in DC electric power system is undergoing nowadays. For these studies, the development of standard analysis model for metro railway electric power system is required. In this paper, a standard analysis model for metro railway electric power system which is using PSCAD/EMTDC program is developed. The developed model is explained and the validity is shown by using the case studies.

  • PDF

철도용 무선전력전송시스템의 급전선로와 레일유기전압의 관계 (Relation between Induced Voltage of Rail and Feeding Line of Wireless Power Transfer System for Railway Application)

  • 김재희;박찬배;정신명;이승환;이병송;이준호;이수길
    • 한국철도학회논문집
    • /
    • 제17권4호
    • /
    • pp.228-232
    • /
    • 2014
  • 철도의 무선전력전송 시스템을 구현하는데 있어 급전선로에서 생성된 자기장은 레일에 유기전압을 형성한다. 레일의 유기전압은 궤도회로의 동작 및 안전사고에 영향을 줄 수 있기 때문에 최소화하는 것이 필요하다. 본 논문에서는 3가지 무선전력전송 선로에 대해서 레일에 형성되는 유기전압의 관계를 시뮬레이션을 통하여 살펴보고 레일 유기전압을 줄이기 위한 급전선로의 자기장 분포를 제시한다.

가선전류에 의한 자기장 형성과 수동루프를 이용한 전기철도차량내 자기장 유도 감쇄 분석 (Analysis of Magnetic Field by Catenary Current and Magnetic Field Mitigation in Electric Railway using Passive Loop)

  • 윤여근;나완수;한인수;이태형;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.384-389
    • /
    • 2011
  • The electric railway cars are operated by high voltage supply through the catenary wire. Also, numerous electric equipments operated by electric signal are distributed in the electric railway cars. Such electric equipments are exposed to EMI/EMC problems, and there is the possibility that the magnetic field due to the catenary wire current takes effect on the electromagnetic field in the electric railway cars which move under the catenary wire. There is the possibility that the electromagnetic interference generates in view of the operation of many electric equipments in the electric railway cars. There is the possibility that the communication device faults generate, and that the hazards on the human beings generate. In this paper, we predict the magnetic field around the catenary wire, and obtain the exact magnetic field distribution by comparing the analytic results and the numerical results. Finally, we confirmed the possibility of the passive loop mitigation by comparing the analytic results and the numerical results through the passive loop mitigation technique.

  • PDF

철도 부하의 이동성을 반영한 변전소 정태부하모델링 수립에 대한 연구 (A Study on a Substation Static Load Model Including the Mobility of a Railway Load)

  • 창상훈;윤석민;김정훈
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.315-323
    • /
    • 2015
  • Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.

FTA를 이용한 교류전철변전소의 신뢰도 분석 (Reliability Analysis of AC Railway Substation by using FTA)

  • 구본희;차준민;김형철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.248-254
    • /
    • 2008
  • Electric railway system consists of traction power system, rolling stock, track, and overhead line system. A railway substation transforms the electric power transmitted from a electric power company and supply it to the railway power system for the operation of traction system.. It is very important to prevent a possible accident and keep the security of electric power system. This paper proposes a reliability analysis of AC railway substation by using Fault Tree Analysis(FTA). Failure rates of each equipment of railway substation are used to evaluate the reliability of railway substation. The analyzed results can be used to improve the system reliability. FTA is performed by the commercialized program of Relex(Ver. 7.7).

  • PDF