• Title/Summary/Keyword: Electric Power Take-off

검색결과 40건 처리시간 0.024초

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계 (Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy)

  • 김정록;배윤혁;조일형
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권2호
    • /
    • pp.146-152
    • /
    • 2014
  • 선형발전기와 연성된 원통형 부이의 수직운동으로부터 파랑에너지를 추출하는 파력발전장치의 설계과정을 소개하였다. 최대 파워는 최적조건($c_{PTO}=b_T$, ${\omega}={\omega}_N$)에서 발생하며, 공진조건시 부이의 수직운동 고유주파수와 속도스펙트럼의 피크 주파수를 일치시키지 않고 의도적으로 고유주파수를 15% 크게 설정하면 추출파워의 최대값을 더욱 높일 수 있다. 이러한 방법을 통하여 추출 파워의 증가와 함께 부이의 흘수를 낮추고 동시에 PTO 감쇠력을 줄일 수 있기 때문에 발전장치 제작 비용을 낮출 수 있는 부수적인 효과를 얻을 수 있었다.

Load Test Simulator Development for Steam Turbine-Generator System of Nuclear Power Plant

  • Jeong, Chang-Ki;Kim, Jong-An;Kim, Byung-Chul;Choi, In-Kyu;Woo, Joo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1384-1386
    • /
    • 2005
  • This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.

  • PDF

하이브리드 전기추진시스템 구축을 위한 SEIG의 출력 특성 분석 (Behavior Analysis of a Self Excited Induction Generator with Various Loads for a Hybrid Electric Propulsion System)

  • 양주호;최교호;이재민;정석권
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.41-47
    • /
    • 2018
  • This paper analyzes the output characteristics of a self excited induction generator with isolated mode according to change of its speeds and loads for building a hybrid electric propulsion system in special purpose ships by using power take off. The induction generators are being considered as an alternative choice to the well-developed generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity. However, the generator working by stand alone has a few problems that the reactive power is required to establish the air gap magnetic flux, and the induced voltage and magnetizing current fluctuate when the load is varied. In spite of its advantages, basic design data of the capacitor bank and behaviors of the output characteristics of the generator are not sufficient for the system. Based on the operating condition(speed range of main engine) of the target boat, a reduced experimental equipment system was constructed to analyze the output characteristics of the SEIG. And a suitable capacitor bank of a stand-alone generator and its output characteristics under various loads was investigated in detail through these experiments. According to the experimental result, it was confirmed that the capacitor bank should be $70{\mu}F{\sim}100{\mu}F$, and the proper SEIG induced voltage should be DC 80 V ~ 250 V in order to storage electrical energy into a battery.

eVTOL PAV 유형별 항속거리 및 항속시간 분석 (Flight Range and Time Analysis for Classification of eVTOL PAV)

  • 이봉술;윤주열;황호연
    • 한국항행학회논문지
    • /
    • 제24권2호
    • /
    • pp.73-84
    • /
    • 2020
  • 자동차 대수의 증가로 인한 지상 교통의 혼잡을 극복하기 위해 많은 회사들이 새로운 방식의 운송 수단인 미래형 개인항공기(PAV)를 제안하였다. 미래형 개인항공기 중에서도 전기를 동력으로 사용하고 수직 이착륙이 가능한 전기수직이착륙(eVTOL)항공기가 주목을 받고 있으며 그러한 항공기들의 형상은 멀티콥터형에서 틸트 덕티드팬까지 다양하다. 본 연구에서는 eVTOL 유형별 장단점 등 특성을 분석하였다. 틸트날개형, 복합형, 멀티콥터형의 대표적인 eVTOL PAV인 바하나, 오로라, 볼로콥터에 대해 구성성분 합계 방식을 사용하여 유해항력을 구하였으며, 항공기 설계 및 공력 해석 프로그램인 OpenVSP와 XFLR5 프로그램을 사용하여 표면적과 유도항력을 구하였다. eVTOL PAV에 사용되는 배터리는 테슬라 2170 배터리로 가정하고 항속거리를 계산하였다. 또한 각 eVTOL에 대해 이착륙 및 순항을 포함한 임무형상별로 에너지소모 및 최대 비행시간을 계산하여 비교하였다.

Assessment of the potential for the design of marine renewable energy systems

  • Duthoit, Maxime;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.119-166
    • /
    • 2018
  • The assessment of the potential for the design of marine renewable energy systems is reviewed and the current situation for marine renewable energy is promising. The most studied forms of marine renewable energy are ocean wind energy, ocean wave energy and tidal energy. Wind turbine generators include mostly horizontal axis type and vertical axis type. But also more exotic ideas such as a kite design. Wave energy devices consist of designs converting wave oscillations in electric power via a power take off equipment. Such equipment can take multiple forms to be more efficient. Nevertheless, the technology alone cannot be the only step towards marine renewable energy. Many other steps must be overcome: policy, environment, manpower as well as consumption habits. After reviewing the current conditions of marine renewable energy development, the authors analyzed the key factors for developing a strong marine renewable energy industry and pointed out the huge potential of marine renewable energy.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • 해양환경안전학회지
    • /
    • 제28권3호
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

Numerical calculation and experiment of a heaving-buoy wave energy converter with a latching control

  • Kim, Jeongrok;Cho, Il-Hyoung;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 2019
  • Latching control was applied to a Wave Energy Converter (WEC) buoy with direct linear electric Power Take-Off (PTO) systems oscillating in heave direction in waves. The equation of the motion of the WEC buoy in the time-domain is characterized by the wave exciting, hydrostatic, radiation forces and by several damping forces (PTO, brake, and viscous). By applying numerical schemes, such as the semi-analytical and Newmark ${\beta}$ methods, the time series of the heave motion and velocity, and the corresponding extracted power may be obtained. The numerical prediction with the latching control is in accordance with the experimental results from the systematic 1:10-model test in a wave tank at Seoul National University. It was found that the extraction of wave energy may be improved by applying latching control to the WEC, which particularly affects waves longer than the resonant period.

도심항공 모빌리티(UAM)를 위한 틸트 덕티드 팬 형 eVTOL의 초기 사이징 (Initial Sizing of a Tilt Ducted Fan Type eVTOL for Urban Air Mobility)

  • 이상곤;고보성;안성호;황호연
    • 한국항공운항학회지
    • /
    • 제29권3호
    • /
    • pp.52-65
    • /
    • 2021
  • A large amount of time and cost is consumed due to congestions caused by an increasing number of cars which results in a lot of emissions. To overcome these problems, a new electric vertical takeoff and landing (eVTOL) aircraft is being considered. Since vertical take off and landing without a separate runway is realized and electricity is used as a power source, it could solve the saturated ground traffic congestions without emissions. In this paper, the initial sizing was performed based on the Nexus 6HX of Belltextron which is a tilt-ducted fan type. In this study, the electric propulsion system that only uses battery was implemented instead of current Nexus 6HX hybrid electric propulsion. Aerodynamic analyses were performed using OpenVSP and XFLR5. Power-to-weight ratio, wing loading, estimated weight were calculated with these analyses.

전기 동력 소형 고정익 무인항공기 공력성능 연구 (Electric power Small fixed wing UAV Aerodynamic performance Analysis)

  • 정성록
    • 항공우주시스템공학회지
    • /
    • 제13권1호
    • /
    • pp.11-17
    • /
    • 2019
  • 본 연구에서는 전기 동력 소형 고정익 무인항공기의 낮은 레이놀즈 영역 및 최소한의 제원으로 운용에 필요한 성능을 일반적인 이론 분석으로 예측하였다. 이를 간단한 전기모터 풍동시험과 실증 비행시험을 통해 비교 분석하여 이론 분석의 타당성을 확인하였다. 분석한 결과의 타당성 확인 결과, 3.5 kg의 고정익 소형 무인항공기는 일반적인 이론분석으로 공력 성능의 분석이 가능하지만, 필요추력은 설계오류가 발생할 가능성이 있는 것으로 확인된다. 이러한 연구 결과를 바탕으로 낮은 레이놀즈 영역에서 비행하는 유사 소형 고정익 무인항공기 개발 시 설계오류를 최소화 하는 방법을 제안하였다.