• Title/Summary/Keyword: Electric Motor Unit

Search Result 131, Processing Time 0.024 seconds

Comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU) (서로다른모델의 전동차에 대한 비교 전과정평가)

  • Kim, Jin-Yong;Choi, Yo-Han;Kim, Young-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.6-14
    • /
    • 2007
  • The objective of this research is to comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU).the environmental impact of Aluminum body Electric Motor Unit(EMU) and Stainless Steel(STS) body Electric Motor Unit(EMU). LCA process consists of four steps which are goal, scope definition, life cycle impact analysis(LCIA) and life cycle interpretation. ISO 14044 provides the LCA standard method which can be conducted by using comparative LCA. From the research it is foung that the Aluminium Body Electric Motor Unit (EMU) is 3.6ton heaver than Stainless Steel(STS) body Electric Motor Unit(EMU). The system boundary of both Electric Motor Unit (EMU) are same life span and travel same distance. These both Electric Motor Unit (EMU) has same kind of environmental impact which is maximum Ozone Depletion(OD). During using period of these two models, the Aluminium Body Electric Motor Unit(EMU) has more global warming(GW) effect but Stainless Steel(STS) body Electric Motor Unit(EMU) has more Ozone Depletion(OD) effect. The above result is obtained by using LCA software PASS verson 3.1.3.

  • PDF

A Study on the Digital Unit Development for Turbine Load Set Control (Turbine Load Set 조정을 위한 Digital Unit 개발)

  • Moon Yong-Seon;Jeong Ho-Jin;Kang Sung-Ryul;Choi Hyeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.498-503
    • /
    • 2005
  • As important device that decide output load in superannuated thermoelectric power plant which do Turbine Load Set Motor device. This generation of electric power system operated Set Up Range Motor according to Set Up value that operator manufactures by hand circumvolve, and generation of electric power output load derision is consisted by internal action including Motor Therefore, in this research passively output load operated Turbine Motor Drive equipment that can have existing Turbine Load Set Motor Performance developing Digital Drive Unit device design. Also control algorithm implementation and existing Turbine Load Set Motor Drive and connection possibility through designed controlling system to connect basis function that decide development output load with Digital Drive Unit that designed also with existing Motor Drive Unit and can be operated.

Development of Traction Unit for 2-motor Driven Electric Vehicle

  • Park, Jung-Woo;Koo, Dae-Hyun;Kim, Jong-Moo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.950-954
    • /
    • 1998
  • This paper describes a development of traction unit for 2-motor driven electric vehicle (EV). The traction unit is consisted with an interior permanent magnet synchronous motor (IPMSM), a reduction gear and an inverter for electric vehicle that is driven by 2 motors without differential gear. For traction unit, prototype IPMSM and inverter have been developed. The IPMSM was designed by CAD program that was developed with both equivalent circuit method and FEM. Also the inverter was developed to drive 2 motors with 6 legs IGBT switches in a control board. The vector control algorithm was implemented with maximum torque control method in the constant torque region and field weakening control method in the constant power region considering inverter capacity. To verify that the traction unit is more high efficiency and has more high power density than a traction unit with induction motor with the same power, we would like to show the results about the design and analysis of the IPMSM and the experiment results about the traction unit.

  • PDF

Design and Analysis of AFPM Coreless Motor for Electric Scooter

  • Kim, Chul-Ho;Oh, Chul-Soo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.90-96
    • /
    • 2003
  • This paper deals with the design and the characteristic analysis of a coreless axial flux permanent magnet (AFPM) motor. Because a direct-drive wheel motor is easily derived from it, the AFPM motor is very suitable for application in an electric scooter. Compared to a conventional motor of the same size and weight, the AFPM motor is proven to have more power and torque per unit weight. In this paper, an AFPM coreless motor with a double-sided rotor disk equipped with Nd-Fe-B rare earth magnets is designed and a prototype of the motor is manufactured, which will be properly applied for the low-speed, and high-torque direct drive required for the electric scooter. The manufactured prototype of the motor has a rating of 300W, 510rpm, 5.6Nm, and 85% efficiency.

Evaluation of environmental impacts for the bogie of electric motor unit(EMU) using simplified life cycle assessment(S-LCA) (간략화된 전과정 평가를 이용한 전동차 대차의 환경영향 진단)

  • Kim Yong-Ki;Yoon Hee-Teak;Yang Yun-Hee;Lee Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.581-585
    • /
    • 2005
  • In this study, the environmental impacts of a bogie in the electric motor unit(EMU) were evaluated quantitatively using simplified life cycle assessment(S_LCA). Target was the bogie and life cycle inventory(LCI) database for the bogie was established. The software used for simplified LCA was PASS. Environmental impacts with the parts of the bogie were dependent on their weight significantly. Among impact categories, abiotic resource depletion(ARD) and global warming(GW) were shown dominantly. Global warming was occurred mainly due to the emission of CO₂released from energy consumption and abiotic resource depletion was caused mostly by the consumption of iron ore for the manufacturing of steel. Therefore, the environmental impacts of the bogie could be reduced by the light-weighting of EMU and the improvement of energy efficiency.

Life Cycle Assessment on the Interior Panel of Electric Motor Unit (EMU) (전동차 내장판넬에 대한 전과정평가 연구)

  • Lee, Jae-Young;Choi, Yo-Han;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.517-523
    • /
    • 2006
  • The sustainable development is a key issue in the whole field of economy, culture and society, which can be accomplished by the improvement of environment. Recently, life cycle assessment(LCA) has been applied to reduce environmental impacts preliminarily by evaluating the environmental performance of a product through its life cycle. In this study, life cycle assessment was performed to analyze quantitatively the environmental impact on the interior panel of electric motor unit(EMU). As a result, the interior panel with aluminum showed the most global warming(GW), while that with phenol and plastic showed high fresh water aquatic ecotoxicity(FAET) and marine water aquatic ecotoxicity(MAET), respectively. Global warming was occurred mainly due to the emission of $CO_2$ by energy consumption. FAET and MAET were caused by the pollutants released from acid-washing and paints coating process. Therefore, an environmental-friendly EMU can be designed considering the environmental impacts of interior panel.

Experimental Study on Thermal Analysis of Steering Control ECU Structure for Electric Vehicles (전기자동차용 조향장치 제어 ECU 구조의 열해석에 관한 실험적 연구)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.113-119
    • /
    • 2015
  • The technical development of electric vehicles has been actively proceeding because of the reduction of oil resources and need for eco-friendly vehicle technology. In particular, an electronic control unit is an important element in the technology of electric vehicles due to the motor drive system. This paper concerns an experimental study on the thermal analysis of the steering control ECU structure for an electric vehicle. The ECU unit is designed for eight heat sinks for the thermal analysis of the ECU structure. The thermal analysis characteristics of the ECU structure are evaluated by the temperature distribution, heat flow, von Mises stress, total translation, and external surface temperature measurement of the ECU unit.

Power Conversion Unit for Hybrid Electric Vehicles (하이브리드 전기자동차 구동용 전력변환장치)

  • Lee, Ji-Myoung;Lee, Jae-Yong;Park, Rae-Kwan;Chang, Seo-Geon;Choi, Kyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.420-429
    • /
    • 2008
  • This paper describes design procedure and control strategy of HDC(High side DC/DC Converter) and MCU(Motor Control Unit) for diesel hybrid electric vehicle. In designing HDC and MCU for HEV high power density and reliability is strongly needed to meet the demand of automotive industry. In order to achieve the high performance of a controller, MPC5554 based control board is developed. An optimized film capacitor and inductor are also developed for high efficiency driving. Skim 63 IGBT module of SEMIKRON for automotive is used for power switching device. The most efficient cooling model for optimal size and reliability were verified by simulation. These procedures are verified by bench or driving test and the results are present in this paper.

Comparative LCA of three types of Interior Panel (IP) in Electric Motor Unit (EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.596-599
    • /
    • 2007
  • A comparative Life Cycle Assessment (LCA) among three types of Electric Motor Unit (EMU) Interior Panel (IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It is assumed that Manufacturing stage and its upstream processes, Use stage and End of Life (EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As a comparison results, aluminum IP has much larger environmental impact (5.162pt) than others (FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum IP has relative big environmental impact (1.824pt) and this point make the most important difference from other IPs (FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP (888.96kg) and phenol IP (316kg), the final environmental impact result has only little difference (0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

Drive Controller System in PM Motor with Independently Excited Winding for an Electric Bicycle (전기자전거용 독립여자권선 영구자석 전동기의 구동제어기 설계)

  • Choi, Jin-Wook;Son, Young-Dae;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.175-177
    • /
    • 2007
  • This paper presents for the torque characteristics and improving the efficiency of driving system of electric bicycle which applied IEWPM(Independently Excited Winding Permanent Magnet) motor. IEWPM motor can expand the number of phase from 3 phases to multiphase like SRM motor because stator windings are unconnected directly. BLDC motor raise rotor'-s electromagnetic torque per unit volume by using Spoke type permanent magnet. By using two photo sensor per phase and applying excited width, advance angle and bipolar control, we confirmed higher torque at a low speed, higher out-put at a high speed, and efficiency improvement at a wide speed control area.

  • PDF