• 제목/요약/키워드: Electric Mechanical Brake

검색결과 56건 처리시간 0.021초

한국형 고속전철의 기계 제동력 측정 방법 (Measurement of Mechanical Braking Force for KHST)

  • 김석원;김영국;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.580-585
    • /
    • 2003
  • Korean high speed train (KHST) has adopted a combined electric/ mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, we introduce the braking performance test and the measuring method of mechanical brake. And disc brake performance has been reviewed by the experimental method. The on-line test of KHST has been carried out up to 260 km/h and proved that the disc braking capacity of KHST is sufficient.

  • PDF

한국형 고속전철의 디스크 제동력 측정 방법에 관한 연구 (A Study on the Measuring Method of Disc Braking Force for HSR 350x)

  • 김석원;김영국;박태원
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.244-251
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine properly the various brakes. Korean high speed train (HSR 350x) has adopted a combined electric and mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, the measuring method that can take a measurement of the braking forces for disc brake and wheel disc brake has been suggested and we have verified that this method is valid through on-line test of HSR 350x.

하이브리드형 전기식 제동장치의 성능에 대한 연구 (A Study on the Performances of Hybrid type Electric Brake System)

  • 송정훈;부광석;임철기
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.

전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석 (Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System)

  • 송현우;최정훈;황성호;전광기;최성진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

전동차 제동기의 유압화에 관한 연구 (A Study on Application of Hydraulic Brake System)

  • 이한민;김길동;오세찬;박성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.169-171
    • /
    • 2008
  • The brake systems of the rolling stocks are generally consisted of electrical and mechanical brake systems. Because of its inherent structure of the each brake system, the electrical brake system is mainly used at the high speed range while the mechanical brake system is used at the relatively lower speed range. It is desirable for the rolling stocks to apply the entire electrical brake system. However, since the brake force from electric brake system is not enough to stop the rolling stock within the legal stop distance. Therefore, the mechanical brake system is indispensable to rolling stocks. In general, the vast majority of the world trains are equipped with mechanical braking systems which use compressed air as the force to push block on to wheels or pads on to discs. These mechanical systems are known as air brake or pneumatic brakes. For the air brake system, basically huge scale air compressor is equipped and the long pipe line is complexively connected. Since mass of these air brake components, it is difficult to be a light weight equipment and the long pipe line raise the maintenance problem. In order to overcome these problems of air brake system, the hydraulic brake system is proposed in this research. The hydraulic brake system makes the whole weight of brake equipment be light and large braking force can be applied. Therefore, in this research, the validity and advantages of applying the hydraulic brake system are reviewed.

  • PDF

철도차량 제동기의 압력제어에 관한 연구 (A Study on Pressure Control Method of Train Brake System)

  • 이한민;김길동;박성환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1909-1915
    • /
    • 2008
  • The brake systems of the rolling stocks are generally consisted of electrical and mechanical brake systems. Because of its inherent structure of the each brake system, the electrical brake system is mainly used at the high speed range while the mechanical brake system is used at the relatively lower speed range. It is desirable for the rolling stocks to apply the entire electrical brake system. However, since the brake force from electric brake system is not enough to stop the rolling stock within the legal stop distance. Therefore, the mechanical brake system is indispensable to rolling stocks. In general, the vast majority of the world trains are equipped with mechanical braking systems which use compressed air as the force to push block on to wheels or pads on to discs. These mechanical systems are known as air brake or pneumatic brakes. For the air brake system, basically huge scale air compressor is equipped and the long pipe line is complexively connected. Since mass of these air brake components, it is difficult to be a light weight equipment and the long pipe line raise the maintenance problem. In order to overcome these problems of air brake system, the hydraulic brake system is proposed in this research. The hydraulic brake system makes the whole weight of brake equipment be light and large braking force can be applied. Therefore, in this research, the validity and advantages of applying the hydraulic brake system are reviewed.

  • PDF

전기 자동차용 Brake-By-Wire 시스템을 위한 전자식 브레이크 구현 (Implementation of Electro-Mechanical Brake(EMB) for Brake-By-Wire System of Electric Vehicle)

  • 류혜연;정기민;김만호;이경창
    • 한국산업융합학회 논문집
    • /
    • 제20권4호
    • /
    • pp.313-323
    • /
    • 2017
  • As vehicles become more intelligent this is focused on ways to enhance safety and convenience for both drivers and passengers. In particular, x-by-wire systems that replace rigid mechanical components with dynamically configurable electronic elements are being developed to expand intelligent functions, such as adaptive cruise control or lane departure warning system. Because the malfunction of safety-related modules controlling critical functions, such as brakes, throttle, and steering in x-by-wire systems, can cause injury or death, safety and reliability are the most critical issue for automotive vendors and parts manufacturers. In an effort to develop better and effective brake-by-wire system, this paper presents EMB system by using the low speed electric vehicle, which is not required large braking force, with motor controller. In addition, we design performance evaluation system of EMB with 1/4 low speed electric vehicle model and suggested EMB is evaluated through the performance evaluation system.

Electromagnetic Actuator with Novel Electric Brake for Circuit Breaker

  • Bae, Byungjun;Kim, Minjae
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.340-347
    • /
    • 2016
  • At the stroke end of an electromagnetic circuit breaker, the high speed of the mover makes a huge impact at the contact point, which induces the rebound problem of the mover that causes a breaker failure. Thus, a speed reduction equipment is required to address such problems. This study suggests to use an electric brake reduces the speed at the end of the stroke. The proposed circuit breaker which adopts the electric brake has a variable speed reduction function such that the continued rebound phenomenon ceases to occur. The electric brake is designed by the Finite Element Method (FEM) and the circuit and motion equations are solved using Time Difference Method (TDM). The comparisons between the simulation and experiments demonstrated the usefulness and validity of this study.

전동킥보드 브레이크 디스크의 열전달에 관한 융합 연구 (A Convergent Study on Heat Transfer at Brake Disc of Electric Kickboard)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.233-237
    • /
    • 2020
  • 본 연구에서는 전동킥보드 브레이크 디스크 열전달을 해석하였다. 브레이크 디스크의 패드 접촉면에 따라 다른 열이 전달된다. 접촉면에서 멀어진 부분에서는 온도가 작아지는 경향이 거의 일정하였으며 Model A가 Model B 보다는 약간 더 낮은 온도 분포를 보였다. Model A가 Model B에 비하여 그 최대 등가응력이 7% 정도 더 높다. 설계시에 타원형으로 패드와 접촉하는 Model B가 원형인 Model A 보다는 그 응력이 감소됨을 보였다. 접촉면 위쪽으로 열이 더 많이 전달되는 것으로 미루어 볼 때 설계시 브레이크 디스크의 모서리 부분을 고려하여 본다면 Model B가 Model A보다 그 강도가 더 크다고 사료된다. 본 연구 결과를 전동킥 보드의 설계에 활용한다면 더 강도가 좋은 브레이크 디스크 설계를 할 수 있을 것이라고 생각된다. 본 연구 결과를 전동킥보드 브레이크 디스크에 적용함으로서 열에 대한 브레이크의 내구성을 평가할 수 있고 그 결과가 강성 있는 브레이크의 설계와 미적인 융합이 될 수 있다고 보인다.

전자 제어식 주차브레이크(EPB)의 성능분석 (Performance Analysis of Electronic Parking Brake)

  • 김성모;정종렬;신창우;임원식;차원석
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.