• 제목/요약/키워드: Electric Load Forecasting

검색결과 100건 처리시간 0.022초

수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구 (A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand)

  • 고종민;양일권;송재주
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

웨이브릿 변환을 이용한 계절별 부하예측 알고리즘 (Seasonal load forecasting algorithm using wavelet transform analysis)

  • 김창일;김봉태;김우현;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.242-244
    • /
    • 1999
  • This paper proposes a novel wavelet transform based algorithm for the seasonal load forecasting. In this paper, Daubechies DB2, DB4 and DB10 wavelet transforms are adopted to predict the seasonal loads and the numerical results reveal that certain wavelet components can effectively be used to identify the load characteristics in electric power systems. The wavelet coefficients associated with certain frequency and time localization are adjusted using the conventional multiple regression method and then reconstructed. In order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the wavelet transform approach can be used as an attractive and effective means of the seasonal load forecasting.

  • PDF

퍼지 예측 시스템을 이용한 전력 부하 예측 (Electric Power Load Forecasting using Fuzzy Prediction System)

  • 방영근;심재선
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1590-1597
    • /
    • 2013
  • Electric power is an important part in economic development. Moreover, an accurate load forecast can make a financing planning, power supply strategy and market research planned effectively. This paper used the fuzzy logic system to predict the regional electric power load. To design the fuzzy prediction system, the correlation-based clustering algorithm and TSK fuzzy model were used. Also, to improve the prediction system's capability, the moving average technique and relative increasing rate were used in the preprocessing procedure. Finally, using four regional electric power load in Taiwan, this paper verified the performance of the proposed system and demonstrated its effectiveness and usefulness.

요일 요인을 고려한 하절기 전력수요 예측 (The Load Forecasting in Summer Considering Day Factor)

  • 한정희;백종관
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2793-2800
    • /
    • 2010
  • 이 논문에서는 여름철 일일 전력수요 총량을 예측하는 회귀모형을 개발한다. 경제적인 전력 생산계획을 수립하기위해 예측 오차율을 낮추는 것은 매우 중요하다. 전력수요가 크게 증가하는 여름철 전력수요를 예측하기위해 기존 연구에서는 외기온도 및 직전일 전력수요를 고려하였으나, 이 논문에서는 기존 연구에서 제시한 예측 오차율을 개선하기 위해 전력수요의 요일별 특성을 추가적으로 고려한 회귀모형을 개발한다. 이 논문에서는 여름철 전력수요의 요일별 패턴은 최고차항의 계수가 음수인 2차 함수 형태를 나타냄을 확인하였다. 즉, 2005년부터 2009년까지 5년간의 여름철 전력수요 패턴을 살펴본 결과 전력수요 총량은 일요일에 가장 낮고 월요일부터 증가하다가 수요일이나 목요일부터 다시 감소하는 패턴을 보인다. 이 논문에서 제안하는 여름철 전력수요 예측 회귀모형의 타당성을 검증하기 위해 2005년부터 2009년까지 실제 전력수요 데이터를 바탕으로 여름철 전력수요 총량을 예측한 결과, 평균 오차율(MAPE: Mean Absolute Percentage Error)과 최대 오차율(MPE: Maximum Percentage Error)이 각각 3.08%와 8.99%를 넘지 않는 수준임을 확인하였다. 또한 기존 연구에서 제시한 방법과 비교하여도 평균 오차율과 최대 오차율 모두 기존 연구에서 제시한 오차율보다 우수함을 확인하였다.

전력량 예측 및 부하 패턴을 근거로 한 부하 곡선 예측 (Electric Energy Forecasting and Development of Load Curve Based on the Load Pattern)

  • 지평식;조성현;이종필;남상천;임재윤;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.163-165
    • /
    • 1996
  • In this paper, we are proposed development of electric energy method and load curve. A daily electric energy is forecasted using artificial neural network. The load curve is obtained by combining forecasted electric energy and typical daily load patterns which are classified using KSOM and Fuzzy system. As a result, we know that we could get more accurate results and easier application than the results from based on the hourly historical data.

  • PDF

스마트 플레이스 부하모델 개발을 위한 이동성 부하 및 보급패턴에 관한 연구 (A Study on Mobility Loads and the Deployment Patterns for the Development of Smart Place Load Model)

  • 황성욱;송일근;김정훈
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.217-223
    • /
    • 2014
  • Recently, various researches and projects about electric vehicles are in progress vigorously and continuously and it is expected to penetrate rapidly with the next a few years. This deployment will cause the change of load composition rate affecting on power system planning and operations. Therefore, a new load model should be developed integrating with electric vehicle loads. In this paper, the load composition rate of residential sectors is analyzed considering the deployment of this mobility load such as electric vehicles and a new diffusion model is proposed based on the classification of the replacement patterns. Additionally, electric vehicle charging loads are basically modeled by some individual load experiments to develop new load models for smart place and some new conceptual power systems such as micro grids.

계통계획을 위한 지역별 전력수요예측 (Regional Electricity Demand Forecasting for System Planning)

  • 조인승;이창호;박종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.292-294
    • /
    • 1998
  • It is very important for electric utility to expand generating facilities and transmission equipments in accordance with the increase of electricity demand. Regional electricity demand forecasting is among the most important step for long-term investment and power supply planning. The main objectives of this paper are to develop the methodologies for forecasting regional load demand. The Model consists of four models, regional economy, regional electricity energy demand, areal electricity energy demand. and areal peak load demand. This paper mainly suggests regional electricity energy demand model and areal peak load demand. A case study is also presented.

  • PDF

신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구 (Experimental Study on Cooling Load Forecast Using Neural Networks)

  • 신관우;이윤섭;김용태;최병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델 (Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding)

  • 김광호;장병훈;최황규
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.852-857
    • /
    • 2019
  • 분산자원 집합 거래시장에 참여를 원하는 소비자나 사업자를 위한 가상발전소의 전력거래 플랫폼에서 사업참여자의 수요 자원을 관리하고, 이에 적절한 전략을 제공하기 위해 익일 개별 참여자의 수요와 전체 계통의 전력수요를 예측하는 것이 대단히 중요하다. 이러한 전력거래 플랫폼에서 활용하는 것을 목표로 본 논문은 우선 익일의 24시간 전력계통 전력수요예측 모델을 개발하였다. 본 논문에서는 전력수요예측 데이터의 시계열 특성을 고려하여 딥러닝 기법 중 LSTM 알고리즘을 사용하였고, 전력수요량 등의 입출력 값에 원-핫 인코딩 기법을 적용하는 새로운 시도를 하였다. 성능평가에서 일반 DNN과 본 논문에서 구현된 LSTM 예측모델은 각각 평균 제곱근 오차 4.50, 1.89를 나타내어 LSTM 모델이 예측정확도가 높게 나타났다.

EV 충전소의 일별 최대전력부하 예측을 위한 LSTM 신경망 모델 (An LSTM Neural Network Model for Forecasting Daily Peak Electric Load of EV Charging Stations)

  • 이해성;이병성;안현
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.119-127
    • /
    • 2020
  • 국내 전기차 (EV: Electric Vehicle) 시장이 성장함에 따라, 빠르게 증가하는 EV 충전 수요에 대응하기 위한 충전설비의 확충이 요구되고 있다. 이와 관련하여, 종합적인 설비 계획을 수립하기 위해서는 미래 시점의 충전 수요량을 예측하고 이를 바탕으로 전력설비 부하에 미치는 영향을 체계적으로 분석하는 것이 필요하다. 본 논문에서는 한국전력공사의 EV 충전 데이터를 이용하여 충전소 단위의 일별최대부하를 예측하는 LSTM(Long Short-Term Memory) 신경망 모델을 설계 및 개발한다. 이를 위해, 먼저 데이터 전처리 및 이상치 제거를 통해 정제된 데이터를 얻는다. 다음으로, 충전소 단위의 일별 특징들을 추출하여 훈련 데이터 집합을 구성하여 일별 최대 전력부하 예측 모델을 학습시킨다. 마지막으로 충전소 유형 별 테스트 집합을 이용한 성능 분석을 통해 예측 모델을 검증하고 이의 한계점을 논의한다.