• Title/Summary/Keyword: Electric Heat Pump

Search Result 148, Processing Time 0.021 seconds

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Development of 1MW Organic Rankine Cycle System for Industrial Waste Heat Recovery Put English Title Here (산업배열회수용 1MW급 유기랭킨 사이클 시스템 개발)

  • Cho, H.C.;Park, H.S.;Lee, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.776-781
    • /
    • 2001
  • To enhance thermal efficiency of thermal facility through recovery of low and medium temperature waste heat, 1MW organic Rankine cycle system was designed and developed. The exhaust gases of $175^{\circ}C$ at two 100MW power plants in pohang steel works were selected as the representative of low and medium temperature waste heat in industrial process for the heat source of the organic Rankine cycle system. HCFC-123, a kind of harmless refrigerant, was chosen as the working fluid for Rankine cycle. The organic Rankine cycle system with selected exhaust gases and working fluid was designed and constructed. From the operation, it was confirmed that the organic Rankine cycle system is available for low and medium temperature waste heat recovery in industrial process. The optimum operating manuals, such as heat-up of hot water, turbine start-up, and the process of electric power generation, were derived. However, electric power generated was not 1MW as designed but only 670kW. It is due to deficiency of pump capacity for supply of HCFC-123. So it is necessary to increase the pump capacity or to decrease the pressure loss in pipe for more improved HCFC-123 supply.

  • PDF

The Analysis of heating performance of heat pump system for agricultural facility using underground air in Jeju area - Focused on the Jeju Area - (제주지역 지하공기를 이용한 농업시설용 히트펌프시스템의 난방 성능 분석 - 제주지역을 중심으로 -)

  • Kang, Youn-Ku;Lim, Tae-Sub
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2016
  • Purpose: The underground air is the warm air discharged from the porous volcano bedrock 30-50m underground in Jeju, including excessive humidity. The temperature of the underground air is $15-20^{\circ}C$ throughout the year. In Jeju, the underground air was used for heating greenhouses by supplying into greenhouses directly. This heating method by supplying the underground air into greenhouses directly had several problems. The study was conducted to develop the heat pump system using underground air as heat source for resolving excessive humidity problem of the underground air, adopting the underground air as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and saving heating cost for agricultural facilities. Method: 35kW scale(10 RT) heat pump system using underground air installed in a greenhouse of area $330m^2$ in Jeju-Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si, Jeju. The inlet and outlet water temperature of the condenser, the evaporator and the thermal storage tank and the underground air temperature and the air temperature in the greenhouse were measured by T type thermocouples. The data were collected and saved in a data logger(MV200, Yokogawa, Japan). Flow rates of water flowing in the condenser, the evaporator and the thermal storage tank were measured by an ultrasonic flow meter(PT868, Panametrics, Norway). The total electric power that consumed by the system was measured by a wattmeter(CW240, Yokogawa, Japan). Heating COP, rejection heat of condenser, extraction heat of evaporator and heating cost were analyzed. Result: The underground air in Jeju was adopted as a farm supporting project by Ministry of Agriculture, Food and Rural Affairs(MAFRA) in 2010. From 2011, the heat pump systems using underground air as a heat source were installed in 12 farms(16.3ha) in Jeju.

Development of a Hydraulic Power Package Enclosed with an Electric Motor (모터 일체형 유압 파워 패키지의 개발)

  • Park, Y.H.;Lee, C.D.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • In this study, a new design of an one-body type of an unbalanced-fixed- displacement type vane pump combined with an induction type electric motor was suggested. By the application of the new design scheme, it was possible to reduce the number of parts of the pump system and to cut down the volume of power package than that of already-used products. The case in this study enabled efficient heat transfer and electricity insulation of hydraulic fluid. Thus oil moves through the inside of the package for cooling and returns to the reservoir. Because of this design, it was difficult to measure the shaft-input torque. Therefore the package overall efficiency in the paper was evaluated with a ratio of hydraulic power and electric power.

  • PDF

A Study on a Novel Flow Control Valve for Wind Power Heat Generation Hydraulic Systems (풍력 열발생 유압 시스템을 위한 새로운 유량제어밸브에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Bong Jun
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • A wind power heat generation system that converts wind power directly to heat instead of electric power is considered in this study. The system consists of a wind turbine part and a heat generation part. The heat generation part is materialized by a hydraulic system including a hydraulic pump, a flow control valve, a hydraulic oil tank, etc. The flow control valve primarily converts hydraulic energy generated in the pump to heat energy. It should have a function of overspeed protection under excessive wind speeds. In this study, a novel flow control valve design is proposed for excellent flow control characteristics under excessive pump driving torque (excessive wind speed). The performance of the suggested valve is analyzed using numerical simulation.

Development of Heat Pump Use Slurry Pig Manure Evaporation Drying System (열펌프를 이용한 슬러리 돈분뇨 증발건조처리시스템 개발)

  • Kim H. T.;Choi H. L.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.32-37
    • /
    • 2005
  • This study was conducted the slurry pig manure treatment by condensation drying of liquid from the slurry manure with a heat-pump and electric heater combined with air flow channel system. The system was designed as liquid and solid matters separation of slurry manure, and it can doing continuous input of slurry manure from a pig house, and it can operated year round use for pig farms. The separation of liquid and solid matters from slurry manure needed the prevention of solid accumulation in the system. The system was designed as closed space from outside air space for maximized evaporation of liquid and the condensation of liquid from slurry manure. The system can be operated the pig slurry manure treatment regardless of seasons in a yew. The separated evaporation water from the pig slurry manure by the heat-pump was satisfactorily pure water that can be used as washing water in livestock farms. The system can applicate to about 100 heads of pig, and the proper area of evaporation plate system was considered around $10\;m^2$. The input electrical energy of about 15 kWh which the cost equal to 250,000 won per month.

Study on Performance of Heat Pump using a subcooled refrigerant (냉매과냉각에 의한 열펌프의 성능향상에 관한 연구)

  • 박승준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.159-164
    • /
    • 2000
  • In this paper a new type refrigerant liquid subcooling system which adopts ice storage system is proposed. And the cycle characteristicso of a new system was investigated. Since this system subcools a refrigerant in the daytime using the ice storaged by electric power in the night it is high efficiency heat pump system which have the merit of ice storage system and possible to improve the performance of the heat pump. The running to storage the ie was carried out for 10 hours in the night and th evaporating temperature was set on $-5^{\circ}C.$ Subcooling operation stayed as 430^{\circ}C$ subcooling degree and perfomed till the water in the IST(Ice storage tank) was reached $12^{\circ}C$. The experimental result showed that a new system was superior to the existing refrigeration system generally. The total cooling capacity of a new system was about 11% higher than that of the existing refrigeration system. And the COP of a new system was improved by 22% compared to the existing refrigeration system.

  • PDF

Study on the Performance of a Cascade Heat Pump with Two-stage Water Heating Process (2단 승온 캐스케이드 히트펌프의 성능 특성에 관한 연구)

  • Jang, Hanbyeoul;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2016
  • It is estimated that only heating and cooling take about one third of the total energy consumption worldwide. However, the conventional heating and cooling systems have low efficiencies. Also, boilers and electric heaters that are mostly used to generate both domestic and industrial hot water are inefficient and high energy consumers. For this reason, cascade heat pumps which are known to be very energy efficient and have less environmental impact are being promoted to replace conventional heating, cooling and hot water systems. In this study, a newly designed cascade heat pump by two-stage water heating method has been experimentally investigated. By adopting the auxiliary heat exchanger, the performance of the system was increased. The performance enhancement rate of the system could be maximized by adjusting the low stage compressor speed rather than the high stage compressor speed. The performance of the system with the auxiliary heat exchanger was enhanced by 16.5%.

Liquid Cooling System Using Planar ECF Pump for Electronic Devices (평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템)

  • Seo, Woo-Suk;Ham, Young-Bog;Park, Jung-Ho;Yun, So-Nam;Yang, Soon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

Economic Evaluation of Various Cooling Systems (냉방기기별 경제성 평가)

  • Kim, Young-Il;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.214-219
    • /
    • 2008
  • In this study, medium capacity EHP and GHP for air-conditioning a building with a floor area of $1,200\;m^2$ are compared economically. To consider all the factors of initial and operation costs effectively, an annual equal payment method is proposed. For the initial cost, equipment, construction, installation, electric facility, financial subsidy and tax cut are considered. Basic electricity, energy(electricity and gas), space charge, labor, insurance and repair are considered for the operation cost. Under the assumptions made in this study, overall cost of EHP is less than that of GHP. However, different outcome may result if different assumptions are made. This study is useful for performing an economic evaluation of various air-conditioning systems.

  • PDF