• Title/Summary/Keyword: Electric Fault

Search Result 888, Processing Time 0.026 seconds

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

Analysis of Induced Voltage on the Gas Pipeline at the Fault in a Underground Power Cables (지중전력케이블에서 고장발생시 인근 가스배관에 유도되는 전압 해석)

  • Bae J. H.;Kim D. K.;Kim K. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.26-32
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power Therefore, there has been and still is a growing concern(safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline, especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion limitation of safety voltage and analysis of induction voltage.

  • PDF

A Study of Stator Fault Detection for the Induction Motor Using Axial Magnetic Leakage Flux (축방향 누설자속 측정에 의한 유도전동기의 고정자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.131-137
    • /
    • 2005
  • The purpose of this paper is to evaluate the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algerian for the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency bases to detect the failure of the motor. Specific signature can be described in time and frequency domain for each faults of the motor. The spectrum of the signal was found more useful for the monitoring purpose. The supply voltage imbalance and tin to turn failure of the stator winding could be detected by analysing the specific sidebands of the axial flux and sideband of the rotor bar pass frequency with the high resolution spectrum. The goal of this study verity that the axial flux measurement for the induction motor is a powerful tool for the diagnostic method and develope the algorithm to detect the fault.

Case Study on AUTOSAR Software Functional Safety Mechanism Design: Shift-by-Wire System (AUTOSAR 소프트웨어 기능안전 메커니즘 설계 사례연구: Shift-by-Wire 시스템)

  • Kum, Daehyun;Kwon, Soohyeon;Lee, Jaeseong;Lee, Seonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.267-276
    • /
    • 2021
  • The automotive industry and academic research have been continuously conducting research on standardization such as AUTOSAR (AUTomotive Open System ARchitecture) and ISO26262 to solve problems such as safety and efficiency caused by the complexity of electric/electronic architecture of automotive. AUTOSAR is an automotive standard software platform that has a layered structure independent of MCU (Micro Controller Unit) hardware, and improves product reliability through software modularity and reusability. And, ISO26262, an international standard for automotive functional safety and suggests a method to minimize errors in automotive ECU (Electronic Control Unit)s by defining the development process and results for the entire life cycle of automotive electrical/electronic systems. These design methods are variously applied in representative automotive safety-critical systems. However, since the functional and safety requirements are different according to the characteristics of the safety-critical system, it is essential to research the AUTOSAR functional safety design method specialized for each application domain. In this paper, a software functional safety mechanism design method using AUTOSAR is proposed, and a new failure management framework is proposed to ensure the high reliability of the product. The AUTOSAR functional safety mechanism consists of memory partitioning protection, timing monitoring protection, and end-to-end protection. The fault management framework is composed of several safety SWCs to maintain the minimum function and performance even if a fault occurs during the operation of a safety-critical system. Finally, the proposed method is applied to the Shift-by-Wire system design to prove the validity of the proposed method.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Electrical properties of a resistive SFCL with shunt resistor (분로저항을 가진 저항형 초전도 한류기의 전기적 특성)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.343-347
    • /
    • 1999
  • We fabricated a resistive SFCL having a shunt resistor parallel to it in order to bifurcate the transient current at faults. The SFCL consists of a YBCO film coated with an Au layer (10 ${\omega}$ at room temperature), which is to disperse the heat generated at hot spots in the YBCO film, and the 5 ${\omega}$ shunt resistor. The minimum quench current of the SFCL was found to be 12.2 A$_{peak}$. This SFCL successfully controlled the fault current below 23 A$_{peak}$ which is otherwise to increase up to 113 A$_{peak}$. Bifurcation of the current resulted in the temperature rise of the YBCO/Au film 3 times slower than without the shunt, protecting the SFCL at high currents.

  • PDF

Configuration of Test Field for Introduction of IEC 60364-4-44 to Domestic System (IEC 60364-4-44의 국내 도입을 위한 실증시험장 구성)

  • Nam, Kee-Young;Choi, Sang-Bong;Jeong, Seong-Whan;Lee, Jae-Duck;Ryoo, Hee-Suk;Kim, Dae-Kyeong;Jung, Dong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.731-732
    • /
    • 2007
  • This paper presents the final configuration of test field and test items for the application of IEC 60364-4-44 in Korea. IEC 60364-4-44 provides rules for the protection against the effects of conducted and radiated disturbances on electrical installations. Especially this standard deals with the protection of low voltage facility against the ground fault in the high voltage side of power distribution system. Many countries define the regulations on the use of electrical facilities based on their own power system and technical references which are considered to be suitable for them. The background of circuit of IEC 60364-4-44 is based on the ungrounded system as most of European countries. However, domestic electric power distribution system is based on multi-grounding system different from European system. Therefore, it is necessary to evaluate or prove the effect of the IEC 60364-4-44 for introducing and applying it to the domestic grounding system as a national standard. The authors with KEA(Korea Electric Association) carried out a project on the application of IEC 60364-4-44 to Korean electrical installations of buildings sponsored by Korean ministry of commerce, industry and energy for three years(2004.4.1$\sim$2007.3.31). The test field is established in K.E.R.I.(Korea Electrotechnology Research Institute), which is the purpose of evaluating the formula to calculate touch voltage and stress voltage in the IEC standards. This paper presents some considerations and final configuration of test field to evaluate and introduce the IEC 60364-4-44 applicable to domestic rule for the protection against ground fault.

  • PDF

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Development of Current Limiting COS Fuse Link with Improved Overcurrent and Protection Coordination performance (과전류 차단과 보호협조 성능이 향상된 한류형 COS 퓨즈링크 개발)

  • Kim, Youn-Hyun;Kim, Young-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • A Cut Out Switch (COS) is used for line protection and pole transformer protection in power systems. The COS used to protect the pole transformer is installed on the power side of the pole transformer to protect the electric equipment from fault currents. The COS is composed largely of a body and a fuse holder, and when the fault current is energized, the element of the fuse link in the fuse holder is melted to block the fault current. The arc generated when the COS fuse link is blown causes fire and noise, causing discomfort to residents in the surrounding area, and the arc flame can cause secondary damage to the peripheral device. In this study, a current-limiting COS fuse with improved overcurrent blocking performance rather than explosion type was developed to solve the arc and noise problems during COS operation. The overcurrent breaking performance of the current-limiting COS improves the reliability by developing a striker and COS fuse bracket. In addition, this study aimed to verify the performance of the developed current-limiting COS fuse through a test at an authorized institution.