• Title/Summary/Keyword: Electric Fault

Search Result 888, Processing Time 0.024 seconds

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Series Arcing Fault Detection Method Using Harmonics Analysis of Supply Current (전원 전류 고조파 해석에 의한 직렬 아크 고장 검출 방안)

  • Ahn, Jeongwoon;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.30-37
    • /
    • 2014
  • Recently, Concerns of imbalance for power supply has been raised by the increase of electric power consumption, but the interest of electric safety is still lacking due to the incompleteness of regulations. Particularly, Arcing fault, direct cause of electric fire accidents, is difficult to detect, interrupt due to unformal signal behaviour in previous research and apply to real system. In this paper, Arcing fault simulator device was fabricated to investigate the characteristics of series arcing fault and simulated the faults in various real load. Also, this study are analysed arcing fault signal by using the harmonic analysis of the acquired data from the current of the power supply and proposed the methods to prevent the series arcing fault accidents in advance.

A Study on the Protection System for AT Feeding on the Electric Railway (전기철도 AT급전방식 보호시스템 최적구성 방안 연구)

  • 창상훈;이형수;홍재승;김정훈
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.344-351
    • /
    • 1999
  • The safe operation of electro railways is greatly dependant on its protective systems. The system so-called Fault Protection Wire(FW) is now widely adapted to protect in AT feeding systems. It is connected between the feeder and trolley circuit to return the fault current to autotransfonmers at substation. This paper computed the distribution of fault currents at FW in the system and also evaluated the safety from electric shock when ground fault or flashover occur in the feeding system. The results show FW is useful to protect power supply network from fault in electric railways

  • PDF

Investigation on the Commercialization Issues of Resistive Type Superconducting Fault Current Limiters for Electric Networks

  • Park, Tae-Gun;Lee, Sang-Hwa;Lee, Bang-Wook
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Among the various types of fault current limiters, superconducting fault current limiters could be the most preferable choice for high voltage electric power systems owing to the remarkable current limiting characteristics of superconductors. But, there have been no commercial superconducting fault current limiters which were installed into actual electric power systems until these days due to some remained technical and economical problems. Thus, in order to promote the development and application of the superconducting fault current limiters into real field, it is essential to understand the power utilities’ requirements for their networks and also suitable test method and some specifications should be prepared. This paper focuses on the matters of test requirements and standardization issues that should be prepared for commercialization of superconducting fault current limiters. The unique current limiting characteristics of superconducting fault current limiters were investigated and related other standards including circuit breakers, transformers, reactors, power fuse, and fused circuit breakers were compared to setup the basis of novel specification of superconducting fault current limiters. Furthermore, required essential test procedures for superconducting fault current limiters were suggested.

  • PDF

Development of a Fault Diagnosis Model for PEM Water Electrolysis System Based on Simulation (시뮬레이션 기반 PEM 수전해 시스템 고장 진단 모델 개발)

  • TEAHYUNG KOO;ROCKKIL KO;HYUNWOO NOH;YOUNGMIN SEO;DONGWOO HA;DAEIL HYUN;JAEYOUNG HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.478-489
    • /
    • 2023
  • In this study, fault diagnosis and detection methods developed to ensure the reliability of polymer electrolyte membrane (PEM) hydrogen electrolysis systems have been proposed. The proposed method consists of model development and data generation of the PEM hydrogen electrolysis system, and data-driven fault diagnosis learning model development. The developed fault diagnosis learning model describes how to detect and classify faults in the sensors and components of the system.

A study of communication-based protection coordination for networked distribution system (네트워크 배전계통용 통신기반 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Lee, HakJu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2022
  • Although the distribution system has been structured as complicated as a mesh in the past, the connection points for each line are always kept open, so that it is operated as a radial distribution system (RDS). For RDS, the line utilization rate is determined according to the maximum load on the line, and the utilization rate is usually kept low. In addition, when a fault occurs in the RDS, a power outage of about 3 to 5 minutes occurs until the fault section is separated, and the healthy section is transferred to another line. To improve the disadvantages of the RDS, research on the construction of a networked distribution system (NDS) that linking multiple lines is in progress. Compared to the RDS, the NDS has advantages such as increased facility utilization, load leveling, self-healing, increased capacity connected to distributed generator, and resolution of terminal voltage drop. However, when a fault occurs in the network distribution system, fault current can flow in from all connected lines, and the direction of fault current varies depending on the fault point, so a high-precision fault current direction determination method and high-speed communication are required. Therefore, in this paper, we propose an accurate fault current direction determination method by comparing the peak value polarity of the fault current in the event of a fault, and a communication-based protection coordination method using this method.

A study on the detection of poor contact and arcing fault using a fuzzy logic (퍼지논리를 적용한 전기적 접촉불량 및 아크 검출에 관한 연구)

  • Kim, Hyun-Woo;Kim, In-Tae
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.205-210
    • /
    • 2007
  • This study on the prevention of electric fire. Generally the electric fire is caused by break or disconnection of the power line, short circuit and poor contact, arcing fault ect. In these causes, this paper is studied on the detection of poor contact and arcing fault. The arcing fault is caused by poor contact mainly. The arcing fault can occurs a electric fire by interaction of flammable gas and materials and it can be caused of tracking and carbonization. These phenomenons is also caused of electric fire. Therefore this paper is studied on the detection of arcing fault and poor contact.

  • PDF

A Study for Fault Location Scheme Using the 9-Conductor Modeling of Korean Electric Railway System (9도체 전기철도 모델링을 이용한 고장점 표정 방안 연구)

  • Lee, Han-Sang;Lee, Chang-Mu;Lee, Han-Min;Jang, Gil-Soo;Chang, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.411-413
    • /
    • 2006
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because there is a long distance, 40 km or longer, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, the catenary system must be modeled exactly to analyze fault current magnitude and fault location. In this paper, before suggestion for the novel scheme of fault location, a 9-conductor modeling technique that includes boost wires and impedance bonds is introduced, based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and suggest a powerful model for fault analysis on electric railway systems.

  • PDF

Fabrication and characterization of fault current limiting devices made of stabilizer-free coated conductors (Stabilizer-free 초전도 선재를 이용한 한류 소자 제작 및 특성 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seong-Duck;Kim, Hye-Rim;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.371-371
    • /
    • 2009
  • For the application of superconducting wires to fault current limiting devices, it is required that they have a high rated voltage when a fault occurs. Stabilizer-free coated conductors, particularly, shows a good performance for the high rated voltage, which is beyond 0.6 V/cm. In this study, using the stabilizer-free coated conductors, we made fault current limiting devices and examined their characteristics. Fault current limiting devices were fabricated with a shape of the cylinder of a mono-filar coil winding. Stabilizer-free coated conductors were wound along the mono-filar coil line and the terminal parts between the wire and metal were soldered using In solder. Two kinds of devices were fabricated by a different method in the terminal joint, one was made by a soldering and the other was made by a soldering-free joint. Critical currents and resistance at the joint parts were measured. In addition, long-time current flowing tests were also carried out for the characterization of the fault current limiting devices.

  • PDF