• Title/Summary/Keyword: Electric Fatigue

Search Result 182, Processing Time 0.026 seconds

Development of Bending Fatigue Test System for Trolley Line Simulating Real Conditions (실사용조건을 모사한 전차선 굽힘피로 특성평가 시스템개발)

  • Kang, Min-Sung;Ahn, Sang-Soo;Koo, Jae-Mean;Seok, Chang-Sung;Lee, Ki-Won;Cho, Yong-Hyeon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3059-3064
    • /
    • 2011
  • A Trolley line is a very important equipment among electric railway equipments since it contacts directly with pantograph and supplies electricity on the electromotive. Such it was thought that a trolley line need not to consider fatigue since the replace cycle by wear is shorter than the replace cycle by fatigue breakage. But, the bending fatigue breakage accidents occurred several times at the Shinkansen trolley line in East Japan Railway Company. Therefore, in case of a new developed trolley line, the evaluation for bending fatigue life became more important, But, since there are not an authorized fatigue test method and a testing device for the trolley line, the quantitative evaluation is difficult. In this study, we analyzed the load and environment condition of trolley line used in the actual spot and the developed testing device that can evaluate bending fatigue properties of the trolley line as simulating the real condition. The bending fatigue test of the trolley line was achieved using the developed testing device and estimated the fatigue life of trolley line and also, established the fatigue test process.

  • PDF

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

A Study on the Fatigue Strength Improvement using Weld Toe Burr Grinding (용접토우부의 그라인딩에 의한 피로강도 증대효과에 대한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Choi, Jae-Young;Kim, Wha-Soo;Paik, Young-Min
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2006
  • While it is known that the weld toe grinding method may give 3.4 times of fatigue strength improvement, this improvement may significantly vary according to weld bead shapes and loading modes. Although tremendous interest have been given in improving fatigue strength improvement for ship structures, quantitative results are yet in need. In this context, a series of fatigue tests is carried out for a type of test specimen that are typically found in ship structures. Weld burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. The test results are compared with the same type of test specimen without applying the fatigue improvement technique in order to obtain a quantitative measure of the fatigue strength improvement. On the other hand, both hot spot stress and structural stress methods are employed to compare the effectiveness of the two methods in evaluating the fatigue strength improvement of welded structures.

The Change of Full Width Half Maximum and Residual Stress during Fatigue Process in S45C Steel (피로과정에서 S45C강의 반가폭과 잔류응력의 변화양상)

  • Boo, Myung-Hwan;Park, Young-Chul;Kim, Byeong-Soo;Lee, Jong-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.539-544
    • /
    • 2002
  • The purpose of this study is to examine the change of full width half maximum(FWHM) and residual stress during fatigue process in S45C Steel, by X-ray diffraction. For S45C Steel, the relationship between the change in fatigue damage of the specimen and the FWHM, and residual stress of X-ray diffraction profiles during the fatigue processes has been investigated. The FWHM decreases in the early period of fatigue cycle. The change of FWHM is associated with cyclic work hardening. The change of the FWHM is not significant in $10{\sim}20%$ of ratio of fatigue life. The residual stress is changed with fatigue cycle increasing during the fatigue pro process.

Red Ginseng Supplementation More Effectively Alleviates Psychological than Physical Fatigue

  • Choi, Ji-Young;Woo, Tae-Sun;Yoon, Seo-Young;Dela Pena, Ike Campomayor;Choi, Yoon-Jung;Ahn, Hyung-Seok;Lee, Yong-Soo;Yu, Gu-Yong;Cheong, Jae-Hoon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.331-338
    • /
    • 2011
  • Red ginseng (RG, the extract of Panax ginseng Meyer) has various biological and psychological activities and may also alleviate fatigue-related disorders. The present study was undertaken to evaluate what kind of fatigue red ginseng alleviate. Animals were orally administered with 50, 100, 200, 400 mg/kg of RG for 7 days. Before experiments were performed. Physiological stress (swimming, rotarod, and wire test) are behavioral parameters used to represent physical fatigue. Restraint stress and electric field test to a certain degree, induce psychological fatigue in animals. Plasma concentration of lactate and corticosterone (CORT) were also measured after these behavioral assays. RG supplementation (100 mg/kg) increased movement duration and rearing frequency of restrainted mice in comparison with control. 100 and 200 mg/kg of RG increased swimming time in cold water ($8{\pm}4^{\circ}C$) while at 100 mg/kg, RG increased electric field crossing over frequencies. 50, 100 and 200 mg/kg RG prolonged running time on the rotarod and at 100 mg/kg, it increased balancing time on the wire. RG at those doses also reduced falling frequencies. RG supplementation decreased plasma CORT levels, which was increased by stress. Lactate levels were not significantly altered. These results suggest that RG supplementation can alleviate more the damages induced by psychological than physical fatigue.

Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures (초내열합금 GTD-111의 고온 저주기피로 수명예측)

  • Yang, Ho-Young;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;You, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.753-758
    • /
    • 2011
  • The Ni-base super-heat-resistant alloy, GTD-111, is employed in gas turbines because of its high temperature strength and oxidation resistance. It is important to predict the fatigue life of this superalloy in order to improve the efficiency of gas turbines. In this study, low-cycle fatigue tests are performed as variables of total strain range and temperature. The relationship between the strain energy density and number of cycles to failure is examined in order to predict the low-cycle fatigue life of the GTD-111 superalloy. The fatigue life predicted by using the strain-energy methods is found to coincide with that obtained from the experimental data and from the Coffin-Manson method.

A Study on the Safety Evaluation of Cast-iron Bogie of Rebuiled Diesel-Electric Locomotive (재생디젤기관차 주강대차의 안전성 평가에 관한 연구)

  • 이찬우;서정원
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.240-246
    • /
    • 2001
  • The main objective of the study is to provide the criteria for determining the proper life cycle of rebuiled diesel-electric locomotive currently being operated in KNR. We predicted the most critical sections of the cast-iron bogie and tested the diesel-electric locomotive vehicle to measure dynamic stresses applied to the bogie. The fileld test of the diesel-electric locomotive estimated 9.90years based on the fatigue-life estimation when they are continuously used in the present operation condition.

  • PDF

Failure Analysis of Circulating Water Pump Shaft in Power Plant (발전 계획에서 순환 물 펌프 고장 분석)

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.125-128
    • /
    • 2021
  • This paper presents the root cause failure analysis of the circulating water pump in the 560 MW thermal power plant. A fractured austenitic stainless-steel shaft operated for 24 years was examined. Fracture morphology was investigated by micro and macro-fractographic analysis. The metallurgical analyses including chemical analysis, metallography and hardness testing were performed. The analysis reveals that the pump shaft was fractured due to the reverse bending load with combination of rotating bending load. Corrective actions for plant operator was recommended based on the analysis.

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.