• Title/Summary/Keyword: Electric Energy

Search Result 5,268, Processing Time 0.03 seconds

A Study on Optimal Electric Load distribution of Generators on board using a Dynamic Programming (동적계획법을 이용한 선내 발전시스템의 최적부하분담 방법에 관한 연구)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.106-112
    • /
    • 2000
  • Since the oil crisis, we have been concerned about the energy saving techniques of electric generating systems. As a part of the effort to save energy, automatic electric load sharing device was developed. Usually, ship's electric generating system consists of two or three sets of generator. And, electric generating system is operated as single or parallel operation mode according to the demanded electric power. Therefore, it is important to investigate generators operating mode for the supply of required electric power in the ship in order to decrease the operating cost. So, this paper suggests the method to solve the optimal electric load distribution problem by dynamic programming. And, this thesis indicates that the proposed method is superior to the lagrange multiplier's method in obtaining optimal load distribution solution in the ship's electric generating system.

  • PDF

A Study on Classification of Electric Shock Disasters and Countermeasures (전격재해의 유형 및 대책에 관한 연구)

  • 권영준;손병창;이명희;신승헌
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2000
  • In this modern age which electric energy is the fundamental source of energy in the industry, electric shock disasters are unavoidable. Although numerous efforts, time, and money have been invested to prevent such electric shock disasters, the number of electric shock disasters are on the increase. In this study, models for equivalent electric circuit are developed for the different types of electric shock which are classified into three groups. The objective of these models is to calculate the electric current flowing through the body at the time of the shock. Based on the analysis, countermeasures to prevent the shock are suggested. The data used in this study are based on 28 actual incidents which occurred in the Daegu area during January of 1995 through June of 1999. The results of this study can be used as a technical manual for workers treating electrical facilities.

  • PDF

Performance Research of a Jacket Cooling Water System in a Diesel Electric Generation (디젤발전 자켓냉각시스템 열성능 향상 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Park, Pill-Yang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2009
  • One of the most efficient techniques improving the heat transfer performance of a diesel electric generation is a corrosion control in jacket cooling water system. The environmental parameters most affecting corrosion are dissolved salt concentration, temperature, and pH of cooling water. No corrosion occurs in carbon steel probe at pH 11 in normal operating condition of diesel electric generation cooling water. pH control agent in this study is trisodium phosphate. pH control appears to be the most convenient way to enhance the thermal performance of a diesel electric generation.

Estimation about Application Effects of Energy Storage System at AC Electric Railway (교류전기철도에서의 에너지저장시스템 적용효과 예측)

  • Lee, Chang-Mu;Lee, Han-Min;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1849-1854
    • /
    • 2010
  • Energy Storage System(ESS) is installed at feeding line of railway substation. ESS will absorb regenerative energy when train braking and also charge electric energy when feeding line is no load condition. Absorbed and charged energy will be supplied when train is accelerating condition. Due to ESS the energy variation will be minimized and this effect is estimated.

  • PDF

Anatomy of a flare-producing current layer dynamically formed in a coronal magnetic structure

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.3-42
    • /
    • 2016
  • No matter how intense magnetic flux it contains, a coronal magnetic structure has little free magnetic energy when a composing magnetic field is close to a potential field, or current-free field where no volume electric current flows. What kind of electric current system is developed is therefore a key to evaluating the activity of a coronal magnetic structure. Since the corona is a highly conductive medium, a coronal electric current tends to survive without being dissipated, so the free magnetic energy provided by a coronal electric current is normally hard to release in the corona. This work aims at clarifying how a coronal electric current system is structurally developed into a system responsible for producing a flare. Toward this end, we perform diffusive MHD simulations for the emergence of a magnetic flux tube with different twist applied to it, and go through the process of structuring a coronal electric current in a twisted flux tube emerging to form a coronal magnetic structure. Interestingly, when a strongly twisted flux tube emerges, there spontaneously forms a structure inside the flux tube, where a coronal electric current changes flow pattern from field-aligned dominant to cross-field dominant. We demonstrate that this structure plays a key role in releasing free magnetic energy via rapid dissipation of a coronal electric current, thereby producing a flare.

  • PDF

A Study on the Improving Effectiveness of Shipboard Electric Propulsion System with Ultra-capacitor Energy Storage Devices (울트라 캐패시터 에너지 저장장치를 적용한 함정 전기추진 시스템의 효용성 증대 연구)

  • Kim, So-Yeon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • Recently, integrated electric propulsion system has been vigorously adopted into naval vessels. To enhance effectiveness and efficiency of power management in these propulsion systems, this paper investigates necessity of energy storage devices and their operation strategies. By introducing the energy storage devices, engine can operate at higher efficiency point and accordingly costs for fuel and maintenance are significantly reduced. In addition, transient performance can also be improved with support of the devices and it leads to stable operation of shipboard power bus. To validate the proposal of this paper, computer simulation has been conducted with real load data of existing electric propulsion system.

Hoop Energy Storage System(HESS) for Electric Power Utility (전력 계통에의 이용을 위한 후프 에너지 저장 시스템)

  • 백광현;정기형
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.173-178
    • /
    • 1995
  • Hoop Energy Storage System(HESS) for electric power utility were discussed laying primary stress on the diurnal load leveling of Korean electric power system. A number of potential storage technologies are outlined and possibility for real application of HESS was suggested. Primary system variables were determined on the basis of state of electric power demand-supply of 1994. As a prerequisite technology for HESS, noncontacting support using magnetic pressure and high power conversion were discussed.

  • PDF

Impact Assessment of Plug-in Hybrid Electric Vehicles on Electric Utilities (플러그인 하이브리드 자동차의 시장 형성 시의 전력망에의 영향 분석)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2001-2006
    • /
    • 2008
  • The most concerning issue of these days is the energy crisis by increasing threat of dependency on foreign oil and its volatility itself. In the situations, the PHEV is drawing attention for the next generation's car which could give a chance to decrease the dependency on foreign oil. As well as, the Korean electric power infrastructure is a strategic national asset that is under utilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver necessary energy to charge the PHEVs which could penetrate the market within few years. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the energy dependency. This paper investigate the technical potential and impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging PHEVs technology to meet the majority of daily energy needs of the Korean LDV fleet.

  • PDF

Electric Energy Forecasting and Development of Load Curve Based on the Load Pattern (전력량 예측 및 부하 패턴을 근거로 한 부하 곡선 예측)

  • Ji, P.S.;Cho, S.H.;Lee, J.P.;Nam, S.C.;Lim, J.Y.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.163-165
    • /
    • 1996
  • In this paper, we are proposed development of electric energy method and load curve. A daily electric energy is forecasted using artificial neural network. The load curve is obtained by combining forecasted electric energy and typical daily load patterns which are classified using KSOM and Fuzzy system. As a result, we know that we could get more accurate results and easier application than the results from based on the hourly historical data.

  • PDF

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.