• Title/Summary/Keyword: Electric Drive

Search Result 657, Processing Time 0.024 seconds

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

A Study on the Development of Capacitor Exchange Type GDU of Propulsion Control Device of Electric Railway Vehicle Capable of Life Diagnosis (수명진단이 가능한 전기철도차량 추진제어장치의 커패시터 교환 형 GDU 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.475-484
    • /
    • 2018
  • The propulsion control device of an electric railway vehicle is a key main component corresponding to an engine of an automobile, and a device for controlling this is a device called a GDU (Gate Drive Unit). Also, when the frequency of failure of the propulsion control system was analyzed, the nonconformity ratio of GDU was the highest. GDU was not able to access core technologies due to the introduction of foreign products, and there were general problems with overall maintenance activities due to discontinuation of GDU of the manufacturer. The GDU has reached the end of its life with 23 to 14 years of long-term use.In order to solve these problems, this study was designed to identify the proper life span by analyzing compatible GDU's acquisition and failure, and to improve the existing system of maintenance focusing on health inspection. Maintenance of the components with a short life span compared to the entire service life is essential. Most foreign parts introduced at the beginning of the construction are not replaced due to technical problems or long-term operation. However, due to the characteristics of railway vehicles with a long life span of more than 25 years, it is necessary to maintain them for a long period of time. The study should be more concrete and empirical. The replacement type GDU of capacitors was able to easily measure the life of the capacitance by removing the capacitor modules, measure the life span of each unit test, and accurately perform preventive maintenance of the capacitor.

Analysis of Capacitor Voltage and Boost Vector in Neutral-Point-Clamped and H-Bridge Converter (NPC와 H-Bridge 컨버더의 부스트 벡터와 커패시터 전압의 해석)

  • 김정균;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.274-284
    • /
    • 2003
  • Multi-level converter that is high-capacity electric power conversion system is used widely to electric motor drive system and FATCs(Flexible AC Transmission Systems). H-Bridge converter has been prevalently applied to shunt-type system because it can be easily expanded to the multi-level. In steady states, converter is normally operated in the range of 0.7∼0.8 of modulation Index. Even though zero vectors are not imposed to high modulation index, DC-Link voltage Is constant. It means that converter has another boost vector except for zero vectors among several vectors in 3-level converter. This paper has examined the principle of boost vector and investigated the difference between another boost vector and zero vectors in 3-level converter. In addition, this paper has analysed and compared the charging currents and the capacitor voltages of two topologies. The currents and voltages are related to reference voltage. Therefore, it proposed the calculation method for the voltage ripple and the charging current of each capacitor and compared various DC-Link voltage control methods through the simulation.

Magnetic Levitated Electric Monorail System for Flat Panel Display Glass Delivery Applications (FPD 공정용 Glass 이송 시스템을 위한 자기부상 EMS의 개발)

  • Lee, Ki-Chang;Moon, Ji-Woo;Koo, Dae-Hyun;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.566-572
    • /
    • 2011
  • In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.

Development and Verification of Analytical Model of a Pilot Operated Flow Control Valve for 21-ton Electric Excavator (21톤급 전기 굴삭기용 파일럿 작동식 유량제어 밸브의 해석모델 개발 및 검증)

  • Kim, D.M.;Nam, Y.Y.;Seo, J.H.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.52-59
    • /
    • 2015
  • An electro hydraulic poppet valve (EHPV) and a variable orifice poppet are assembled in a single block, which is referred to as a RHINO but is also generally called a pilot-operated flow control valve. In this study, we analyzed the structure and the operating principle for a RHINO applied in a 21-ton electric excavator system. The RHINO was experimentally tested to measure the dynamic responses and the pressure energy loss. In this test, we investigated the variation in the conductance coefficient according to the increase in the supply pressure under a constant current and a variation in the flow rate according to the increase in the current. Then, the geometrical shapes and the spring stiffness of the RHINO were considered to develop an analysis model. The characteristics (current-force and hysteresis) for the solenoid based on the experimental data were reflected in the analysis model that was developed, and the reliability of the analysis model was also verified by comparing the experimental and analytical results. The developed model is thus considered to be reliable for use in a wide range of applications, including optimum design, sensitivity analysis, parameter tuning, etc.

25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles (차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터)

  • Kim, Sunju;Tran, Hai Ngoc;Kim, Jinyoung;Kieu, Huu-Phuc;Choi, Sewan;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

Torque Ripple Reduction Method With Enhanced Efficiency of Multi-phase BLDC Motor Drive Systems Under Open Fault Conditions (다상 BLDC 모터 드라이브 시스템의 개방 고장 시 효율 향상이 고려된 토크 리플 저감 대책)

  • Kim, Tae-Yun;Suh, Yong-Sug;Park, Hyeon-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • A multi-phase brushless direct current (BLDC) motor is widely used in large-capacity electric propulsion systems such as submarines and electric ships. In particular, in the field of military submarines, the polyphaser motor must suppress torque ripple in various failure situations to reduce noise and ensure stable operation for a long time. In this paper, we propose a polyphaser current control method that can improve efficiency and reduce torque ripple by minimizing the increase in stator winding loss at maximum output torque by controlling the phase angle and amplitude of the steady-state current during open circuit failure of the stator winding. The proposed control method controls the magnitude and phase angle of the healthy phase current, excluding the faulty phase, to compensate for the torque ripple that occurs in the case of a phase open failure of the motor. The magnitude and phase angle of the controlled steady-state current are calculated for each phase so that copper loss increase is minimized. The proposed control method was verified using hardware-in-the-loop simulation (HILS) of a 12-phase BLDC motor. HILS verification confirmed that the increase in the loss of the stator winding and the magnitude of the torque ripple decreased compared with the open phase fault of the motor.

Numerical Analysis of Steering Instability of 55kW Eletric Tractor by Bouncing and Sliding (Bouncing과 Sliding에 의한 55 kW급 전기 트랙터의 조향 불안정성 수치해석)

  • Yeong Su Kim;Jin Ho Son;Yu Jin Han;Seok Ho Kang;Hyung Gyu Park;Yong Gik Kim;Seung Min Woo;Yu Shin Ha
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.56-69
    • /
    • 2024
  • Tractors are used for farming in harsh terrain such as slopes with slippery fields and steep passages. In these potentially dangerous terrain, steering instability caused by bouncing and sliding can lead to tractor rollover accidents. The center of gravity changes as parts such as engines and transmissions used in existing internal combustion engine tractors are replaced by motors and batteries, and the risk of conduction must be newly considered accordingly. The purpose of this study was to derive the center of gravity of a 55 kW class electric tractor using an electric platform from an existing internal combustion engine tractor, and to numerically investigate the tractor steering instability due to bouncing and sliding. The analysis provides a strong analysis by integrating an elaborate combination of a bouncing model and a sliding model based on Coulomb's theory of friction. Various parameters such as tractor speed, static coefficient of friction, bump length and radius of rotation are carefully analyzed through a series of detailed designs. In particular, the simulation results show that the cornering force is significantly reduced, resulting in unintended trajectory deviations. By considering such complexity, this study aims to secure optimal performance and safety in the challenging terrain within the agricultural landscape by providing valuable insights to improve tractor safety measures.

Proposal on Active Self Charging and Operation of Autonomous Vehicle Using Solar Energy (태양광을 이용한 자율주행 자동차의 능동적 자가 충전 및 운행 제안)

  • Hur, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.85-94
    • /
    • 2022
  • In modern society, environmental and energy problems have caused to replace cars with environment friendly energy. Vehicles with internal combustion engine which use petroleum are one of the factors that influence global pollution due to environment problems such as fine dust and ozone layer destruction. In addition use of energies for automobile making resources to become depleted. To solve this limited oil energy problem by using other energy sources. To the problem using electric energy and green energy as alternative for a solution. Among environment friendly energies this paper studies the possibility of drive service for autonomous vehicles that self-charges using only solar energy and whether they can be used as pollution free and alternative energy for automobiles. Studies was researched based on published literature review, data from ministry of transportation and automobile companies. Also case of electric vehicle and prototype automobile using only solar energy and the theory of near future technologies. Many automakers are using electric cars as alternative energy. Also making efforts to use solar energy as an substitute energy source and as a way to supplement electricity. Results show that there is a potential on operating autonomous vehicle using only solar energy. Furthermore, it will be possible to use automobiles actively, also use and supply solar energy. This paper suggest the possibility of contributing to the future of the automotive industry.