• Title/Summary/Keyword: Electric Current Control

Search Result 938, Processing Time 0.032 seconds

Partial Discharge of Ignition Coil for Automotive (자동차 점화코일의 부분방전특성)

  • Shin, Jong-Yeol;Kim, Tag-Yong;Byun, Du-Gyoon;Kim, Weon-Jong;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • 자동차 점화장치는 전원으로부터 공급된 낮은 전압을 점화코일을 통하여 연소실의 혼합기를 연소시키기에 충분한 고전압을 발생시키는 장치이며, 점화장치의 핵심은 점화코일이다. 이 점화코일은 절연성능이 우수한 절연재료가 사용되지만 고전압의 발생으로 점화코일 내부에서 일어나는 전기적 열화로 인해 누설전류가 흐르게 되어 전기적 고장을 초래할 수 있다. 이로 인하여 절연재료의 수명은 단축되며, 또한 점화코일에 전류가 흐름으로써 코일 내부에서 발생하는 온도변화에 따른 절연열화로 점화코일의 성능이 저하될 수 있다. 따라서 본 연구에서는 점화코일에 사용되고 있는 절연재료에 전압이 인가될 때 발생할 수 있는 비파괴검사의 일종인 부분방전 측정을 통하여 전압변화에 따른 에폭시 성형 점화코일의 위상각($\Phi$) - 방전전하량(q) - 발생빈도수(n)의 특성 변화를 조사하고 분석함으로써 점화코일의 수명을 예측하여 자동차 점화장치의 성능진단과 정보제공을 자동차 전기장치의 발전에 도움이 될 것을 기대하며, 온도상승에 따른 점화코일의 부분방전 특성을 실험하고 분석하였다.

  • PDF

Feedback Circuit of Maximum LED Channel String Voltage Detection Converter for Energy Saving on Multichannel LED Module (Multi Channel LED 조명 Module 구동에서 최대 효율을 위한 최대 Channel 전압 감지회로)

  • Kim, Hyun-Sik;Kim, Ki-Woon;Kim, Gi-Hoon;Kim, Yu-Sin;Song, Sang-Bin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.938-941
    • /
    • 2012
  • LED is divided to multichannel in order not to exceed a certain voltage in aspects of electric standard. However, it's not possible to know in accordance with what channel SMPS controls the constant voltage and current. In order to solve this problem, it needs to detect the maximum LED String voltage which is applied to LED control circuit, and it is possible to minimize the voltage drop when a difference of LED string voltage occurs by each channel if LED is controlled by the maximum LED string voltage detected. In addition, it is also possible to maximize the efficiency of LED if change LED voltage by detecting the maximum voltage. Feasibility of this claim was verified through implementation of the circuit.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

A Two-Dimensional Particle-in-cell Simulation for the Acceleration Channel of a Hall Thruster

  • Lim, Wang-Sun;Lee, Hae-June;Lee, Jong-Sub;Lim, Yu-Bong;Seo, Mi-Hui;Choe, Won-Ho;Seon, Jong-Ho;Park, Jae-Heung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.557-560
    • /
    • 2008
  • A two-dimensional particle-in-cell(PIC) simulation with a Monte-Carlo Collision(MCC) has been developed to investigate the discharge characteristics of the acceleration channel of a HET. The dynamics of electrons and ions are treated with PIC method at the time scale of electrons in order to investigate the particle transport. The densities of charged particles are coupled with Poisson's equation. Xenon neutrals are injected from the anode and experience elastic, excitation, and ionization collisions with electrons, and are scattered by ions. These collisions are simulated by using an MCC model. The effects of control parameters such as magnetic field profile, electron current density, and the applied voltage have been investigated. The secondary electron emission on the dielectric surface is also considered.

  • PDF

A Study on Vertiport Installation Standard of Drone Taxis(UAM) (드론택시(UAM)의 수직이착륙장(Vertiport) 설치기준 연구)

  • Choi, Ja-Seong;Lee, Seok-Hyun;Baek, Jeong-Seon;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • UAM(Urban Air Mobility) systems have evolved in the form of helicopters in the 1960~1970s, tiltrotors in the 1980s, small aircraft transportation systems in the 2000s, and electric-powered Vertical Take-Off and Landing (eVTOL) in the 2010s; accordingly, the early heliport has evolved to its current form of a Vertiport. Vertical Takeoff and Landing Sites, Vertiports, are important factors for the successful introduction of UAM, along with the resolution of air traffic control (ATC), air security, and noise problems. However, there are no domestic or international installation standards and guidelines yet. Therefore, in this study, installation standards were prepared by referring to domestic and international case studies, ICAO standards, and MIT research papers. The study proposes to establish standards for Final Approach and Takeoff Area (FATO) as 1.5D, 1D for Touchdown and Lift-Off Area (TLOF), and 1.5D for Safety Area (SA). It also proposes to add "UAM Vertiport Installation Standards" to the 「Act on the Promotion and Foundation of Drone Utilization, Drone Act」.

A Study on Device Development for Electrical Fire Protection on Open Phase of Three-Phase Motor (3상 전동기 결상에 의한 전기화재 보호를 위한 장치 개발 연구)

  • Choi, Shin-Hyeong;Kwak, Dong-Kurl;Kim, Jin-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the three-phase power system using the three-phase motor, when any one-phase is open-phase, the unbalanced current flows and the single-phase power supplied by power supply produces overcurrent to motor coil. As a result, the enormous damage and electrical fire can be given to the power system. Recently, the thermal over-current relay (THR) or electronic motor protection relay (EMPR) is mostly used as the open-phase detection device of the three-phase motor. When the over-current or overheat of electric line is generated, it detects and operates circuit breaker, but there is the defect that the sensing speed is slow, the operation can be sometimes failed, and the precision is decreased. In order to improve these problems, this paper is proposed a new control circuit topology for openphase protection using semiconductor devices. Therefore, the proposed open-phase protection device (OPPD) enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase motor control panel in the field, as it manufactures into small size and light weight. As a result, the proposed OPPD protects the three-phase motor, minimizes the electrical fire from openphase, and contributes for the stable driving of the power system. The performance and confidence of the proposed OPPD is confirmed by a great variety of the experiments of operation characteristic.

A Study on the Design of Green Mode Power Switch IC (그린 모드 파워 스위치 IC 설계에 관한 연구)

  • Lee, Woo-Ram;Son, Sang-Hee;Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, Green Mode Power IC is designed to reduce the standby power. The proposed and designed IC works for the Switch Mode Power Supply(SMPS) and has the function of PWM. To reduce the unnecessary electric power, burst mode and skip mode section are introduced and controlled by external power MOSFET to diminish the standby power. The proposed IC is designed and simulated by KEC 30V-High Voltage 0.5um CMOS Process. The structure of proposed IC is composed of voltage regulator circuit, voltage reference circuit, UVLO(Under Voltage Lock out) circuit, Ibias circuit, green circuit, PWM circuit, OSC circuit, protection circuit, control circuit, and level & driver circuit. Measuring the current consumption of each block from the simulation results, 1.2942 mA of the summing consumption current from each block is calculated and ot proved that it is within the our design target of 1.3 mA. The current consumption of the proposed IC in this paper is less than a half of conventional ICs, and power consumption is reduced to the extent of 1W in standby mode. From the above results, we know that efficiency of proposed IC is superior to the previous IC.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

EEPROM Charge Sensors (EEPROM을 이용한 전하센서)

  • Lee, Dong-Kyu;Jin, Hai-Feng;Yang, Byung-Do;Kim, Young-Suk;Lee, Hyung-Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.605-610
    • /
    • 2010
  • The devices based on electrically erasable programmable read-only memory (EEPROM) structure are proposed for the detection of external electric charges. A large size charge contact window (CCW) extended from the floating gate is employed to immobilize external charges, and a control gate with stacked metal-insulator-metal (MIM) capacitor is adapted for a standard single polysilicon CMOS process. When positive voltage is applied to the capacitor of CCW of an n-channel EEPROM, the drain current increases due to the negative shift of its threshold voltage. Also when a pre-charged external capacitor is directly connected to the floating gate metal of CCW, the positive charges of the external capacitor make the drain current increase for n-channel, whereas the negative charges cause it to decrease. For an p-channel, however, the opposite behaviors are observed by the external voltage and charges. With the attachment of external charges to the CCW of EEPROM inverter, the characteristic inverter voltage behavior shifts from the reference curve dependent on external charge polarity. Therefore, we have demonstrated that the EEPROM inverter is capable of detecting external immobilized charges on the floating gate. and these devices are applicable to sensing the pH's or biomolecular reactions.