• 제목/요약/키워드: Electric Conductivity

검색결과 960건 처리시간 0.023초

전기이중층에 의한 나노유체의 열전달율 향상 (Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL))

  • 정정열;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

액체의 전기 전도도 측정을 위한 저잡음 검출기 설계 (Low-Noise Detector Design for Measuring the Electric Conductivity of Liquids)

  • 김남태
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.287-292
    • /
    • 2012
  • 본 논문에서는 액체의 전기 전도도를 저잡음으로 검출하기 위하여 동기복조를 이용하는 전도도 검출기를 설계한다. 이를 위하여 검출기는 반송파 발생기, 전도도 검출 셀, 전류-전압 변환기 및 동기 복조기로 구성하며, 복조기의 대역폭을 조정하여 검출기의 신호 대 잡음비(SNR)를 개선함으로써, 액체의 극미한 전도도도 용이하게 측정할 수 있도록 한다. 이의 응용 예로써, 반도체 공정의 공기감시용 전도도 검출기를 동기복조를 이용하여 설계하며, 실험을 통하여 설계의 타당성을 확인한다. 실험 결과, 검출기는 설계 성능에 부합하는 특성을 나타내므로, 동기복조를 이용한 전도도 검출기는 액체의 극미한 전도도 측정에 유용하게 사용될 수 있음을 입증하였다.

고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구 (A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment)

  • 이민규;정근식;감상규
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers

  • Choi, Woong-Ki;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.243-246
    • /
    • 2013
  • In this work, electroless Ni-plating on polyethylene terephthalate (PET) ultra-fine fibers surfaces was carried out to improve the electric conductivity of the fiber. The surface properties of PET ultra-fine fibers were characterized using scanning electron microscopy, X-ray diffraction, and contact angle analyses. The electric conductivity of the fibers was measured using a 4-point testing method. The experimental results revealed the presence of island-like nickel clusters on the PET ultra-fine fibers surfaces in the initial plating state, and the electric conductivity of the Ni-plated fibers was enhanced with increasing plating time and thickness of the Ni-layers on the PET ultra-fine fibers.

절연유의 전기전도에 미치는 첨가제의 영향 (The Effect of Additive on the Electric conductivity of Insulating Oil)

  • 정광현;김영봉;김용운;임헌찬;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 1996
  • The static charges are generated by streaming electrification phenomena in insulating oil flowing by force for the purpose of cooling at the internal of Ultra-high power transformer. In this thesis, their elimination method was studied. In this paper the effect of Additive on the electric conductivity of Insulating oil is studied. The variation of electric conductivity disappear when Additive is molten in insulating oil BTA(Benzotriazole) appear more variation of electric conductivity than that of SP-S10(Sorbitan mono-stearate). But the variation is not enough to decrease streaming electrification of insulating oil($\sigma$>10$\^$-12/[S/cm]).

  • PDF

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.

$(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$계의 소결시간에 따른 미세구조와 전기전도도 (The Effect of Sintering Time in the Microstructure and Electric Conductivity of $(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$ System)

  • 임용무;장복기;신동선;김동근;김종빈;윤성도
    • 한국전기전자재료학회논문지
    • /
    • 제11권12호
    • /
    • pp.1099-1107
    • /
    • 1998
  • In this study, the microstructure and electric conductivity of 5mol% $Gd_2O_3$-5mol% $Y_2O_3-ZrO_2$ system(5G5YZ) with a variation of sintering time at $1600^{\circ}C$ were investigated. By the result of TEM analysis of 5G5YZ sintered for 12h, a microcrack was observed near grain boundary. The change of the sintering time did not affect the lattice conductivity, but the grain boundary contribution was varied with the sintering time. The grain boundary conductivity of the sample sintered for 1h showed the highest value. Furthermore, the activation energy of the total conductivity was independent upon the sintering time and showed approximately 1.01eV. The highest conductivity measured at $1000^{\circ}C$ was 0.0197S/cm with the sample sintered for 1h. Comparing to 0h’s, the thickness ration of grain boundary as a function of sintering time were 0.88, 1.11 and 1.29 for 1h, 5h and 12h, respectively. In case of the sample sintered for 1h, the thickness of the grain boundary showed the lowest value. The increase of the sintering time over 1h made the decrease of the electric conductivity as well as the increase of the grain growth and the thickness of the grain boundary. As a result, it seemed that the proper sintering time for 5G5YZ composition was 1h.

  • PDF

전기수력학적 분무에서 노즐재질이 입경분포에 미치는 영향 (Effect of Nozzle Material on Drop Size Distribution in Electrohydrodynamic Spraying)

  • 김명찬;이상용
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1451-1457
    • /
    • 2002
  • When an aqueous liquid such as water having high electric conductivity and high surface tension is discharged from a nozzle under a strong DC electric field, fine drops ranging from 30 to 450 microns can be obtained only through the spindle mode. In the present study, effects of the electric conductivity and the surface wettability of nozzle materials on formation of drops with this mode were investigated. For that, three nozzles with the same size but with different materials were prepared and tested; a stainless steel needle, and a plain and a metal (gold)-coated (except for the tip portion) silica needles. Uniform drops were obtained with the gold-coated silica nozzle over the wider range of the DC voltage input. That is, formation of the liquid cone and detachment of the liquid spindle (ligament) can be more stabilized and frequent with the needles having high electric conductivity but with low surface wettability at their tips.

T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화 (Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel)

  • 한수동;이상준
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF

초전도 한류기의 배전계통 적용 기본검토 (Preliminary Study of HTS-FCL Application in Distribution System)

  • 최흥관;윤재영;김종율;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.421-423
    • /
    • 2003
  • To prevent fault effect in supply of electric power distribution system and plan stable operation of electric power system, must control magnitude of fault current. Although there are various kinds of method to solvethis, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, so that can reflect special quality of actuality supply of electric power distribution system just as it is in this treatise supply of electric power system by two modelling do. Also, by simulation of HTS-FCL action and protection coordination with another equipment appliances, verified the effectiveness in supply of electric power system applying itself super conductivity FCL EMTDC dynamic characteristic model that is develope.

  • PDF