• Title/Summary/Keyword: Electric Compressor

Search Result 140, Processing Time 0.023 seconds

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.

A Study for Fire Examples Involved with Absorbing Material Breakaway and Electric Short in Engine Room of a Large Bus (대형 버스의 엔진룸에서 흡음재이탈 및 전기적인 단락에 관련된 화재 사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • This paper is a purpose to study the failure examples for a large bus vehicle fire. The first example, the researcher certified the fact that the absorbing material break away from the upper side of engine room because of weaken durability and the fire was produced in engine. The second example, it sought the fact that the fire breaks out by electric short because of over-load of compressor. The third example, it found the fact that the fire took place by heating of bellows upper part that was connected with muffler and exhaust manifold. The fourth example, it knew the fact that the fire occurred because of the electric short inside junction box of crash body part that was located to driver seat rightside. Therefore, the fire of a large bus occurring by decrepit of absorbing material and electric short have to thoroughgoingly manage the damage and dangerousness if it happens.

Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles (전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구)

  • Hong, J.S.;Chung, K.W.;Kim, N.K.;Shin, J.H.;Kim, Young Woon;Lee, E.H.;Go, B.S.;Hwang, S.Y.
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

A Study on the Characteristics in Single-Phase Line-Start Permanent Magnet Moter (단상 유도형 동기 전동기(LSPM)의 특성해석에 관한 연구)

  • Jung, Dae-Sung;Kim, Seung-Ju;Lee, Jin-Hun;Choi, Jae-Hak;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • Electric motor efficient improvement from home appliance field is important to the effect reducing the energy consumption. But the electric motor design/analysis technology is still insufficient. Specially the electric motor design/analysis technology of satisfying characteristic of both the induction motor and the synchronous motor such as Line start permanent motor. Therefore the electric motor design/analysis technology is urgently demanded reliability. This paper proposes the sing1e-phase line-start permanent magnet motor to develop the motor it with be able to alternate the sing-phase induction motor it is a refrigerator compressor motor. The sing-phase induction motor is analyzed in the steady state. And we have a certification test to compare our single-phase line-start permanent magnet motor with the sing-phase induction motor. In order to improve the performance, the stator of the single-phase line-start permanent magnet motor is same as the stator of the sing-phase induction motor and changes the rotor form and has the permanent magnet. It used the Finite Element Method(FEM) which is widely used with electronic-magnetic field numerical analysis method.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System (하이브리드 제습냉방시스템의 성능평가 연구)

  • Hwang, Won-Baek;Kim, Young-Chan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

Efficiency Optimization Control of PMSM (PMSM 드라이브의 효율 최적화 벡터제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1143-1145
    • /
    • 2002
  • IPMSM (Interior Permanent Magnet Synchronous Motor) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

  • PDF

Finite Element Analysis of Piston Slap Phenomenon in Reciprocating Compressors Considering Coolant Circulation (냉매순환을 고려한 왕복동형 압축기의 피스톤 슬랩현상에 대한 유한요소 해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Kim, Hyun-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1087-1094
    • /
    • 2003
  • The piston slap phenomenon occurs when the piston collides with the internal wall of the cylinder. Impact force caused by piston slap is one of the major mechanical noise sources in reciprocating compressors. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, forces acting on piston by considering the dynamic behavior of suction and discharge valves are analytically calculated and the piston slap caused by the piston secondary motion is investigated by the finite element method.

A Real-time Calculation Method on Performance Impact of Controllable Operation Parameters for Combined Cycle rower Plant (복합화력 제어가능 운전 파라미터의 실시간 영향산출 기법)

  • Joo Yong-Jin;Park Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.67-73
    • /
    • 2006
  • A calculation method on performance impact of the controllable operations parameter such as GT inlet filter ${\Delta}P$, compressor efficiency, and condenser pressure was devised to achieve best performance of combined cycle power plant with the on-line performance monitoring system. This method calculates the performance impact on the deviation between 'Expected' values and 'Actual' values. Controllable parameter targets are determined based on achievable performance given existing equipments and control conditions.

Maximum Torque Control of PMSM Drive in Field weakening Region (약계자 영역에서 PMSM 드라이브의 최대 토크제어)

  • 이홍균;이정철;김종관;정동화
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Permanent magnet synchronous motor(PMSM) is widely used in many applications such as an electric vehicle. compressor drives of air conditioner and machine tool spindle drives. PMSM drive system have become a popular choice in various application, due to their excellent power to weight ratio. This paper is proposed maximum torque control for field weakening operation of PMSM drive. At low speeds, the reluctance torque is used to maximize the output for a given current level. This is achieved maximum torque per ampere(MTPA) by selecting an optimal value of the direct stator current component. At high speeds, the system reaches a point at which the inverter will not be able to supply the desired voltage. In this case it is necessary to make use of an increased value the direct current component. The proposed control algorithm is applied to PMSM drive system, the operating characteristics controlled by maximum torque control are examined in detail by simulation.