• 제목/요약/키워드: Electric Bus

검색결과 319건 처리시간 0.028초

측정불확도를 고려한 배터리 교환형 전기버스용 접속기 접촉저항 평가에 관한 연구 (A Study of Contact Resistance Test Considered with Measurement Uncertainty for Electric Bus Couplers with Battery-Swapping System)

  • 김광민;이주
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.60-64
    • /
    • 2015
  • Many people think that Electric Vehicles(EVs) is the best method to resolve the problems of running out of fossil fuels. But EVs take long time for charging. So, EVs with battery swapping systems(EVBS) are developed to resolve this problem. Nonetheless, EVBS is not spreaded widely because the method of durability test in couplers is not defined. In this study, the evaluation method of durability test in couplers is defined by some standards and the measurement uncertainty is used to increase the reliability of EV couplers.

Operational Status of 20mN class Ion Engine Subsystem for ETS-VIII

  • Ozaki, Toshiyuki;Kasai, Yukikazu;Nakagawa, Takafumi;Kajiwara, Kenichi;Ikeda, Masafumi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.511-518
    • /
    • 2008
  • The Engineering Test Satellite VIII(ETS-VIII) of Japan Aerospace Exploration Agency(JAXA) uses a 20mN class xenon ion engine subsystem(IES) for North-South Station Keeping(NSSK). The IES was modified for a larger satellite with longer lifetime based on the former IES. ETS-VIII, a three-ton class geosynchronous satellite with 10 years bus lifetime, was launched 18 Dec. 2006 JST; it reached the planned orbit and all bus systems were checked out. The IES showed good results and is now under normal operation. The total accumulated operation time of the IES in orbit was about 2300 hours till $19^{th}$ Dec. 2007.

  • PDF

상분리 모선의 자계 및 와전류 특성 해석 (Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System)

  • 김진수;하덕용;최승길;강형부
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권10호
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

배전계통에 전력용 변압기 병렬운전시 22.9 kV SFCL Bus Tie 적용방안에 관한 연구 (A Study on the Application of SFCL on 22.9 kV Bus Tie for Parallel Operation of Power Main Transformers in a Power Distribution System)

  • 온민귀;김명후;김진석;유일경;임성훈;김재철
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.20-25
    • /
    • 2011
  • This paper analyzed the application of Superconducting Fault Current Limiter (SFCL) on 22.9 [kV] bus tie in a power distribution system. Commonly, the parallel operations of power main transformers offer a lot of merits. However, when a fault occurs in the parallel operation of power main transformer, the fault currents might exceed the interruption capacity of existing protective devices. To resolve this problem, thus, the SFCL has been studied as the fascinating device. In case that, Particularly, the SFCL could be installed to parallel operation of various power main transformers in power distribution system of the Korea Electric Power Corporation (KEPCO) on 22.9 [kV] bus tie, the effect of the resistance of SFCL could reduce the increased fault currents and meet the interruption capacity of existing protective devices by them. Therefore, we analyzed the effect of application and proposed the proper impedance of the R-type SFCL on 22.9 [kV] bus tie in a power distribution system using PSCAD/EMTDC.

UPFC Device: Optimal Location and Parameter Setting to Reduce Losses in Electric-Power Systems Using a Genetic-algorithm Method

  • Mezaache, Mohamed;Chikhi, Khaled;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Ensuring the secure operation of power systems has become an important and critical matter during the present time, along with the development of large, complex and load-increasing systems. Security constraints such as the thermal limits of transmission lines and bus-voltage limits must be satisfied under all of a system’s operational conditions. An alternative solution to improve the security of a power system is the employment of Flexible Alternating-Current Transmission Systems (FACTS). FACTS devices can reduce the flows of heavily loaded lines, maintain the bus voltages at desired levels, and improve the stability of a power network. The Unified Power Flow Controller (UPFC) is a versatile FACTS device that can independently or simultaneously control the active power, the reactive power and the bus voltage; however, to achieve such functionality, it is very important to determine the optimal location of the UPFC device, with the appropriate parameter setting, in the power system. In this paper, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a network for the enhancement of the power-system loadability and the minimization of the active power loss in the transmission line. To verify our approach, simulations were performed on the IEEE 14 Bus, 30 Bus, and 57 Bus test systems. The proposed work was implemented in the MATLAB platform.

DC 배전시스템의 품질향상을 위한 VBC 적응제어 (The design of adaptive Controller for the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System)

  • 우현민;이병헌;장한솔;나재두;김영석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2348-2356
    • /
    • 2011
  • In recent years, many researches for DC power distributed system (PDS) are being preformed and the importance of the DC PDS is more and more emphasized. Furthermore, in the railway system, the DC PDS is used in subway station lighting, facilities, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple parallel loads such as pulsed power load, motor drive system, and constant power loads. Thus, good quality and high reliability for electric power are required and voltage bus conditioner (VBC) may be used the DC PDS. The VBC is a DC/DC converter for mitigation of the bus transients. In this paper, adaptive controller is designed. The simulation results by PSIM are presented for validating the proposed control algorithm.

  • PDF

PCB DC power-bus로부터의 전파방사에 관한 연구 (A study on the radiated emission from the DC power-bus for the PCB)

  • 강승택
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.149-152
    • /
    • 2005
  • The DC power-bus' resonance is frequently attributed to EMI sources in the PCBs. Subsequently, it will ruin the digital signal integrity within one system or between adjacent systems in the form of conducted or radiated emission. Hence, since it is of importance to examine the PCB's emission, this paper sheds a light on the radiated emission from the power-bus with regards to its resonance modes. A full-wave analysis method is used to calculate the impedance and radiated electric fields and is validated by physics and an EM analysis tool.

  • PDF

A Novel Line Stability Index for Voltage Stability Analysis and Contingency Ranking in Power System Using Fuzzy Based Load Flow

  • Kanimozhi, R.;Selvi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.694-703
    • /
    • 2013
  • In electric power system, the line stability indices adopted in most of the instances laid stress on variation of reactive power than real power variation of the transmission line. In this paper, a proposal is made with the formulation of a New Voltage Stability Index (NVSI) which originates from the equation of a two bus network, neglecting the resistance of transmission line, resulting in appreciable variations in both real and reactive loading. The efficacy of the index and fuzzy based load flow are validated with IEEE 30 bus and Tamil Nadu Electricity Board (TNEB) 69 bus system, a practical system in India. The results could prove that the identification of weak bus and critical line in both systems is effectively done. The weak area of the practical system and the contingency ranking with overloading either line or generator outages are found by conducting contingency analysis using NVSI.

식스 스텝 운전을 이용한 선박용 DC 전력 시스템의 직류단 전압 제어 (DC Bus Voltage Regulation With Six-Step Operation in Maritime DC Power System)

  • 윤종훈;손영광;설승기
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.263-270
    • /
    • 2021
  • Active AC/DC converters with PWM operation are utilized to regulate rectified DC bus voltage of a permanent magnet synchronous generator in the maritime DC power system. A DC bus voltage regulation strategy that exploits the six-step operation is proposed in this study. Compared with that of the PWM operation, switching loss of the converter can be significantly reduced under the six-step operation. Moreover, conduction loss can also be reduced due to the high modulation index and reduced flux-weakening current of the six-step operation. A controller is used for the proposed DC bus voltage regulation strategy to verify its validity with the simulation and experimental setup. The simulation and the experimental test results showed that the converter loss reduces to a maximum of 70% and 19%, respectively.

TFT-LCD bus line을 위한 Al-W 박막 특성에 관한 연구 (The characteristics of AlW thin film for TFT-LCD bus line)

  • Dong-Sik Kim;Chong Ho Yi;Kwan Soo Chung
    • 한국진공학회지
    • /
    • 제9권3호
    • /
    • pp.233-236
    • /
    • 2000
  • TFT-LCD(thin film transistor-liquid crystal display) 패널의 데이터 배선 재료로 사용하기 위하여 AlW(3 wt%)의 Al합금 박막을 dc 마그네트론 스퍼터링 방법으로 유리 기판에 증착하여 열처리전과 열처리 후의 박막 특성을 조사하였다. 또한 TFT-LCD의 식각 공정상에서 발생할 수 있는 chemical attack에 대한 저항성을 확인하기 위하여 순환전압전류법(cyclic voltammetry)을 사용하여 Ag/AgCl 전극에 대한 ITO와 AlW alloy의 전극 전위를 측정하였다. 증착된 박막을 $350^{\circ}C$에서 20분간 열처리하였을 때 AlW 박막은 비저항이 감소하였고 약 $11\;{\mu\Omega}cm$의 다소 높은 비저항 특성을 보였다. 주사전자현미경(SEM)과 원자힘현미경(AFM)으로 표면을 분석한 결과 좋은 힐록방지 특성을 보임을 알 수 있었다. 순환전압전류법을 사용하여 측정한 Ag/AgCl 에 대한 ITO의 전극 전위은 약 -1.8V이었고, AlW alloy의 전위 전극은 W의 wt.%가 3% 이상이었을 때, ITO의 전극 전위보다 작게 나타났다. 따라서 측정된 특성 값을 볼 때 AlW(over 3 wt.%) 박막은 data bus line으로 사용할 수 있는 것으로 나타났다.

  • PDF