• Title/Summary/Keyword: Electric Bus

Search Result 319, Processing Time 0.028 seconds

Development of the wheel motor drive system integrated into low-floor axle for the electric bus (전기버스용 초저상 액슬 일체형 휠모터 구동시스템 개발)

  • Cho, Sang-Joon;Yoon, Young-Deuk
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.241-242
    • /
    • 2011
  • 교통 약자 승객의 편의성 증대, 도심의 매연 감소 및 온실가스 저감 등 대중 교통 선진화를 위해 친환경 초저상 전기버스의 개발이 필요하다. 초저상 전기버스는 초저상 액슬 일체형 휠모터 구동시스템을 탑재한 형태로 구현이 가능하며, 초저상 액슬 일체형 휠모터 구동시스템은 구동 모터를 액슬 허브에 일체화 시킴으로써 기존 구동시스템 대비 무게 및 사이즈가 대폭 줄어들고, 동력 전달 매커니즘을 획기적으로 개선하여 효율 향상 및 차량 연비 개선이 가능하다. 특히 바퀴 중심과 액슬 출력 중심에 단차를 둠으로써 차량의 전방 바닥 뿐만 아니라 후방바닥을 평평하게 유지할 수 있어 실내 공간이 획기적으로 개선되어 교통 약자를 포함한 승객의 편의성을 향상시킬 수 있다. 또한, 액슬 일체형 휠모터 구동시스템은 각 휠의 분산 구동이 가능하므로 동특성 및 구동제어성이 뛰어나고, ESP(Electronic Stability Program), VDC(Vehicle Dynamic Control) 등과 연계하여 통합적인 지능형 시스템을 구현할 수 있다. 액슬 일체형 휠모터 구동시스템은 휠모터와 감속기 및 휠모터제어기 등으로 구성되며, 본 논문에서는 초저상 액슬 일체형 구동시스템용 120kW급 휠모터 및 휠모터제어기의 개발 및 다이나모 환경에서 T-N 특성 및 최대 출력 시험, 효율 시험을 통해 전기버스 등 대형 차량(Heavy Duty Vehicle)에 적용 가능한 전기동력시스템의 성능을 확인하였다.

  • PDF

Design and Fabrication of a Home-panel Board for Electromagnetic Compatibility (전자파 대응 단위세대 분전반의 설계 및 제작)

  • 길경석;송재용;이종혁;권장우;송동영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2000
  • This paper describes the design and fabrication of a home-panel board for electromagnetic compatibility which can protect home-electric appliances from transient voltages and power line noise. The proposed panel board include a transient voltage blocking device and a EMI filter which consisted of varistors, capacitors, and bus line inductance.A performance test of the prototype panel board, blocking characteristics to transient voltages and reduction characteristics to power line noise, are carried out by using a combination surge generator standardized in IEC and a network analyzer.The results showed that the proposed panel board is satisfied with the surge immunity level of IEC 61000-4-5, and has an over 20[dB] noise reduction performance in ranges from 150[kHz]∼30[MHz].

  • PDF

Fuzzy Based Approach for the Safety Assessment of Human Body under ELF EM field Considering Power System States

  • Kim, Sang C.;Kim, Doo H.
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.117-122
    • /
    • 1997
  • This paper presents a study on the fuzzy based approach for the safety assessment of human body under ELF electric and magnetic(EM) field considering power system states. The analysis of ELF EM field based on quasi-static method is introduced. UP to the present, the analysis of ELF EM field has been conducted with the consideration of one transmission line, or a power line model only In this paper, however, the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes and the states are classified into two types, normal state resulting from normal operation and emergency state from outages. In order to analyze the uncertainty in the normal state, the Monte Carlo Simulation, a statistic approach was introduced and line current and bus voltage distribution are calculated by a contingency analysis method, in the emergency state. To access the safety of human body, the approach based on fuzzy linguistic variable is adopted to overcome the shortcomings of the assessment by a crisp set concept. In order to validate the usefulness of the approach suggested herein, the case study using a sample system with 765(kV) was done. The results are presented and discussed.

  • PDF

Study of Drawing Optimum Switch Automation Rate to Minimize Reliability Cost (신뢰도 비용 최소화를 위한 개폐기의 최적 자동화율 도출에 관한 연구)

  • Chai, Hui-seok;Kang, Byoung-wook;Kim, Jin-seok;Moon, Jong-fil;Kim, Jae-chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.297-302
    • /
    • 2015
  • Replacing a manual switch installed in a feeder for a distribution system with an automatic one increases the reliability of the electric power system. This is because the automatic switch can shorten the duration of a fault the customer experiences by splitting the faulty section faster than the manual one does. However, improving the reliability of the distribution system may increase investment costs. Here, the investment costs include automatic switch cost, replacement work cost and labor cost. For this reason, importance should be attached to the proper balance between the increase of the investment costs and the improvement of the reliability of the distribution system. This article analyzed reliability index and economics when manual switches installed in a feeder (RBTS Bus2 model) was replaced by automatic ones. In addition, it attempted to draw the optimum rate of automation of manual switches by automatic ones using the GRG optimization method, considering the current economic requirements.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

Determining the Reference Voltage of 345 kV Transmission System Considering Economic Dispatch of Reactive Power (무효전력 경제급전을 고려한 345㎸ 송전계통의 기준 전압 설정 방법)

  • Hwang, In-Kyu;Jin, Young-Gyu;Yoon, Yong-Tae;Choo, Jin-Boo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.611-616
    • /
    • 2018
  • In the cost based pool market in Korea, there is no compensation of reactive power because the fuel cost for reactive power is relatively low compared to that of active power. However, the change of energy paradigm in the future, such as widespread integration of distributed renewable energy source, will prevent the system operator from mandating the reactive power supply without any compensation. Thus, in this study, we propose the reference voltage of the 345 kV transmission system that minimizes the reactive power supply. This is closely related to the economic dispatch of reactive power aiming at minimizing the compensation cost for the reactive power service. In order to verify the effectiveness of the proposed reference voltage, the simulations are performed using the IEEE 14 bus system and the KEPCO real networks. The simulation results show that a voltage lower than the current reference value is recommended to reduce the reactive power supply and also suggest that the current voltage specification for the 345 kV system needs to be reviewed.

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.

Development of an Integrated Power Market Simulator for the Korean Electricity Market

  • Hur Jin;Kang Dong-Joo;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.416-424
    • /
    • 2005
  • At present, the Korean electricity industry is undergoing restructuring and the Cost Based-generation Pool (CBP) market is being operated in preparation of a Two Way Bidding Pool (TWBP) market. In deregulated electricity industries, an integrated power market simulator is one of the tools that can be used by market participants and market operators analyzing market behaviors and studying market structures and market codes. In this regard, it is very important to develop an electricity market simulator that reflects market code providing a market operation mechanism. This paper presents the development of an integrated market simulator, called the Power Exchange Simulator (PEXSIM), which is designed to imitate the Korean electricity market considering the various features of the market operating mechanism such as uniform price and constrained on/off payment. The PEXSIM is developed in VB.NET and composed of five modules whose titles are M-SIM, P-SIM, O-SIM, T-SIM and G-SIM interfacing the Access database program. To verify the features and the performance of the PEXSIM, a small Two Way bidding market with a 12-bus system and a One Way bidding market for generator competition will be presented for the electricity market simulations using PEXSIM.

Outage restoration in electric distribution system using Dijkstra algorithm (Dijkstra 알고리즘을 이용한 배전계통에서의 사고복구)

  • Kim, Hoon;Jeon, Young-Jae;Lee, Seung-Yun;Kim, Jae-Sung;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1416-1418
    • /
    • 1999
  • This paper presents a restoration method by using Dijkstra algorithm for outage restoration problems in distribution system that considering load capacity constraints and operation constraints. Restoration problem in distribution system is difficult to solve problem in a short times, because of a distribution system that supplies power for customers combined with many tie-line switches and sectionalizing switches and have to satisfy plenty of operation conditions. Therefore, this paper applied Dijkstra algorithm which is satisfy radial operation conditions in distribution system. This proposed method used Kruskal algorithm include to Dijkstra algorithm Therefore, proposed method is restored to a outage sections in a short times and just then to satisfied with a operation conditions in distribution system. A 26-bus, 31-branch model system is used to demonstrate the effectiveness of the proposed method.

  • PDF

Reliability Assessment and Transmission Capability Calculation in Power System using Well-being Method (Well-being 평가기법을 이용한 전력시스템의 신뢰도평가 및 송전용량 계산)

  • Son, Hyun-Il;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.841-846
    • /
    • 2010
  • Reliability in electrical power system refers to normal operation for schedule time in some system that action consists. It means that if there is no contingency of electric power supply decrease or load curtailment, reliability of the system is high. In this paper, a method for evaluation of transmission capability is proposed considering reliability standards. Deterministic and probabilistic methods for evaluation of transmission capability has been studied. These researches considered uncertainty of system components or N-1 contingency only. However, the proposed method can inform customers and system operators more suitable transmission capability. Well-being method using state probabilities of system components proves to be a more effective method in this paper comparing with calculation of LOLE(Loss of Load Expectation). The length of calculation is shorter but it can give more practical information to the exact system operators. Well-being method is applied to IEEE-RTS 24bus system to evaluate reliability in case study. The result is compared with a existing way to evaluate reliability with LOLE and it shows that transmission capability connected with adjacent networks. This paper informs system operators and power suppliers of reliable information for operating power system.