• 제목/요약/키워드: Elastodynamic

검색결과 59건 처리시간 0.019초

압전재료를 이용한 산업용 로보트 매니퓰레이터의 동탄성 제어 (Elastodynamic Control of Industrial Robotic Manipulators Using Piezoelectric Materials)

  • 최승복;정재천;최인수;이태훈
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.54-63
    • /
    • 1993
  • This paper presents the dynamic modeling and control methodology to arrest structural deflections of industrial robotic manipulators featuring elastic members retrofitted with surface bonded pizoelectric actuators and sensors. The cynamic modeling is accomplished by employing a variational theorem, prior to developing a finite element formulation. This finite element formulation accounts for both original robot member elements and also bonded piezoelectric material elements. The governing equation of motion is then modified by condensing the electric potential vectors and subsequently two different negative velocity feedback controllers are established; a constant-gain feedback controller and a constant- amplitude feedback controller. By adopting a Model P50 articulating industrial robot manufactured by Gerneral Electric Company, conputer simulations are underlaken in order to demonstrate superior performance characteristics to be accrued from this proposed methodology such as smaller deflections at the end-effector.

  • PDF

유한 고체내 탄성동역학 문제의 모델링 (Modeling of Elastodynamic Problems in Finite Solid Media)

  • 조윤호
    • 비파괴검사학회지
    • /
    • 제20권2호
    • /
    • pp.138-149
    • /
    • 2000
  • 본 논문에서는 유한 고체내 초음파 전파 및 산란 현상의 해석을 위한 다양한 경계요소 모델링 기법이 제시되었다. 박판 재료내 유도초음파 전파에 대한 모드해석을 위해 비균질 적충 박판 구조물에 대한 탄성동역학 경계치 문제가 설정되었으며 이에 대한 수치해로부터 유도초음파의 전파특성을 나타내는 분산곡선이 얻어졌다. 파동 산란시 발생되는 기하학적 복잡성과 모드변환 문제를 수치적으로 모델링하기 위해 탄성 동역학 경계요소법을 적용하였고 이를 박판내 유도초음파의 이론적 직교 모드의 중첩해와 결합시킨 혼합형 경계요소법으로 확장하여 유한 고체내 다중 모드변환의 효율적 모델링법이 제안되었다. 주파수 영역의 수치해로부터 시간 의존 문제의 파동신호 예측을 위해 역 푸리에(Fourier) 변환을 통한 시간 영역 파동산란 신호가 얻어졌다. 이와 함께 실제 초음파 탐상조건에 보다 가까운 파동산란 문제의 모델링을 위해 3차원 경계요소법을 소개하고, 개발중인 3차원 경계요소 프로그램을 이용하여 유한 직경을 갖는 봉재내의 파동 전파를 수치적으로 해석하여 해석해와 비교 검증하였다. 본 논문에서 제시된 탄성파동 모델링 기법은 정량적 비파괴 평가법을 확립하는데 다양하게 응용될 수 있을 것으로 기대된다.

  • PDF

3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소 (Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space)

  • 서춘교;윤정방;김재민
    • 한국전산구조공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-50
    • /
    • 2007
  • 본 논문은 다중 적층지반상의 지반-구조물 상호작용 해석을 위한 3차원 무한요소를 소개한다. 본 무한요소는 Cartesian 좌표계에서 정식화되었으며, 수평, 수평모서리, 수직, 수직 모서리 그리고 수평 수직 모서리 무한요소로서 총 5개의 무한요소로서 구성된다 적용한 형상함수 내부의 파동함수들은 적층지반의 파동문제를 효과적으로 모사하며 다중파동성분을 포함하고 있다. 본 요소의 성능을 검증하기 위하여 주파수영역에서 여러 가지 예제해석을 수행하였다. 균질 및 적층지반상 강체기초와 묻힌 케이슨 기초의 무차원 동적 거동(compliance & impedance)을 구하였으며, 기연구자들의 값과 비교 검토하였다.

재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석 (Numerical Analysis on the Signal Characteristics for Scattered Far-field of Ultrasonic SH-Wave by the Internal Cavity)

  • 이준현;이서일;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.163-172
    • /
    • 2000
  • In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

경계요소법을 이용한 결함의 초음파 산란장 해석 (Application of a Boundary element Method to the Analysis of ultrasonic Scattering by Flaws)

  • 정현조;김진호;박문철
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2457-2465
    • /
    • 2002
  • Numerical modeling of a nondestructive testing system plays an important role in many aspects of quantitative nondestructive evaluation (QNDE). The ultimate goal of a model is to predict test results for a specific flaw in a material. Thus, in ultrasonic testing, a system model should include the transducer, its radiation pattern, the beam reflection and propagation, and scattering from defects. In this paper attention is focused on the scattering model and the scattered fields by defects are observed by an elastodynamic boundary element method. Flaw types addressed are void-like and crack-like flaws. When transverse ultrasonic waves are obliquely incident on the flaw, the angular distribution of far-field scattered displacements are calculated and presented in the form of A-scan mode. The component signals obtained from each scattering problem are identified and their differences are addressed. The numerical results are also compared with those obtained by high frequency approximate solutions.

전기유동유체와 압전필름 액튜에이터를 이용한 스마트 외팔보의 진동제어 (Vibration Control of a Smart Cantilevered Beam Using Electro-Rheological Fluids and Piezoelectric Films Actuators)

  • Park, Y.K.;Park, S.B.
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.119-125
    • /
    • 1997
  • This paper deals with an experimental investigation on an active vibration control of ahybrid smart structure(HSS) via an electro-rheological fluid actuator(ERFA) and a piezoelectric film actuator(PFA). Firstly, an HSS is constructed by inserting a silicone oil-based electro-rheological fluid into a hollow can- tilevered beam and perfectly bonding piezoelectric films ofn the upper and lower surfaces of the beam as an actuator and a sensor, respectively. The control scheme of the ERFA tuning stiffness and damping charac- teristics of the HSS with imposed electric fields is formulated as a function of excitation frequencies on the basis of field-dependent respnses. On the other hand, as for the control scheme of the PFA permitting control voltages to generate axial forces or bending moments for suppressing deflections of the HSS, a neuro sliding mode controller(NSC) is employed. Furthermore, an experimental implementation activating the ERFA and the PFA independently is established to carry out an active vibration control in both the transient and forced vibrations. The experimental results exhibit a superior ability of the gtbrid actuation system to tailor elastodynamic response characteristics of the HSS rather than a single class of actuator system alone.

  • PDF

Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis

  • Lei, Weidong;Liu, Chun;Qin, Xiaofei;Chen, Rui
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.317-326
    • /
    • 2018
  • The iterative decomposition coupling formulation of the precise integration finite element method (FEM) and the time domain boundary element method (TD-BEM) is presented for elstodynamic problems. In the formulation, the FEM node and the BEM node are not required to be coincident on the common interface between FEM and BEM sub-domains, therefore, the FEM and BEM are independently discretized. The force and displacement converting matrices are used to transfer data between FEM and BEM nodes on the common interface between the FEM and BEM sub-domains, to renew the nodal variables in the process of the iterations for the un-coincident FEM node and BEM node. The iterative coupling formulation for elastodynamics in current paper is of high modeling accuracy, due to the semi-analytical solution incorporated in the precise integration finite element method. The decomposition coupling formulation for elastodynamics is verified by examples of a cantilever bar under a Heaviside-type force and a harmonic load.

경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구 (A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method)

  • 이준현;이서일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF