• Title/Summary/Keyword: Elasto-plastic analysis

Search Result 664, Processing Time 0.023 seconds

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju II - Case of Earth Anchor Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 II -어스앵커 공법 시공 사례-)

  • Do-Hyeong Kim;Dong-Wook Lee;Seung-Hyun Kim;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, in order to evaluate the application of lateral earth pressure to earth retaining wall supported by earth anchor in Jeju. The prediction of lateral earth pressure acting on the earth retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Hong & Yun lateral earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, the predicted value of the maximum horizontal displacement for site A was about 10 to 12 times greater than the measured value, and in the case of site B, the predicted value was evaluated as about 9 to 12 times greater than the measured value. That is, both sites showed a similar increase rate in the maximum horizontal displacement by the predicted value compared to the measured value. In all field construction cases, the maximum horizontal displacement by measured values occurred in the sedimentary layer, soft rock layer, and clinker layer, and the horizontal displacement distribution was shown in a trapezoidal shape. The maximum horizontal displacement by the predicted value occurred around the clinker layer, and the horizontal displacement distribution was elliptical. In the ground with a clinker layer, the measured value showed a very different horizontal displacement tendency from the predicted value, because the clinker layer exists in the form of a rock layer and continuous layer. In other words, it is unreasonable to apply the existing prediction method, which is overestimated, because the characteristics of the earth pressure distribution in Jeju show a tendency to be quite different from the predicted earth pressure distribution. Therefore, it is necessary to conduct a research on the lateral earth pressure in the realistic Jeju that can secure more economic efficiency.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju I - Case of Strut Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 I -스트럿 공법 시공 사례)

  • Do-Hyeong Kim;Dong-Wook Lee;Hee-Bok Choi;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, In order to examine the application of lateral earth pressure to the earth retaining wall considering the typical ground characteristics (clinker layer) in Jeju. The prediction of the lateral earth pressure causing the horizontal displacement of the retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, it was confirmed that the maximum horizontal displacement predicted at site A was about 5 times larger than the measured value, and the ground with maximum horizontal displacement occurred by the prediction was found to be the clinker layer. In the case of site B, the predicted value was 4 to 7 times larger than the measured value. In addition, the ground with maximum horizontal displacement and the tendency of horizontal displacement were very different depending on the prediction method. This means that research on lateral earth pressure that can consider regional characteristics needs to be continued, because it is due to the multi-layered ground characteristics of the Jeju area in which bedrock layers and clinker layers are alternately distributed,

An Analysis of the Settlement Behavior of Soft Clayey Ground Considering the Effect of Creep during the Primary Consolidation (1차압밀과정중의 크리프의 영향을 고려한 연약 점성토지반의 침하거동 해석)

  • Baek, Won-Jin;Matsuda, Hiroshi;Choi, Woo-Jung;Kim, Chan-Kee;Song, Byung-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • This paper is performed to examine the effect of creep during the primary consolidation and the applicability of the Yin's EVP (Elasto-Visco-Plastic) model. In ordinary consolidation theories using the elastic model, the primary consolidation process can be expressed but the secondary consolidation process cannot. It is due to the viscosity, which can express the secondary consolidation, and is sometimes related to the scale effect (difference of the thickness of clay layer between laboratory sample and field condition) such as hypotheses Type A and Type B shown by Ladd et al. (1977). Usually, the existence of the creep during the primary consolidation has been conformed and the Type B is well acceped. On the other hand, from the large-scaled consolidation tests the intermediate characteristic between Type A and Type B was proposed as Type C by Aboshi (1973). In this study, to clarify the effect of creep on the settlement-time relation during the primary consolidation in detail, Type B consolidation tests were performed using the separate-type consolidation test apparatus for a peat and clay. Then the test results were analyzed by using Yin's EVP Model (Yin and Graham, 1994). In conclusion, followings were obtained. At the end of primary consolidation, the compression for the subspecimens should not be the same because of the difference of the excess pore water pressure dissipation rate. And the average settlement measured by the separate-type consolidometer coincides with the analyzed one using the Yin's EVP model. As for the dissipation of the excess pore water pressure, however, the measured excess pore water pressure dissipates faster compared with the Yin's model.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).