• Title/Summary/Keyword: Elasto-forming

Search Result 63, Processing Time 0.023 seconds

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

Estimation on Serrated Core Machining Load for Metal Gasket using Elasto-plastic Analysis (탄소성해석을 이용한 금속 개스킷용 톱니형 코어 가공 하중 평가)

  • Kim, Tae-Hyung;Lee, Seong-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.145-151
    • /
    • 2012
  • In this study, finite element analysis is carried out to estimate horizontal forces needed for the required power calculation and vertical forces applied on the structural analysis model for the development of automatic serrated surface at metal gasket core machining system. By considering of elasto-plastic material characteristics, nonlinear contact analysis was conducted to compute these loads according to the change of roll reduction, frictional coefficient and core thickness. As the result, horizontal and vertical reaction force variations are found according to parameters and maximum reaction force is also confirmed to be most affected by roll reduction.

Design of Induction Heating Coil for Automatic Hull Forming System

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.360-366
    • /
    • 2018
  • In shipyards hull forming is performed by the line heating method using a gas torch and by cold treatment using a roll-press. However, this forming process has some issues, such as difficulties in controlling and accurately estimating the amount of the heat input, as well as a harsh working environment due to exposure to loud noises and air pollution. The induction heating method, which is introduced in this paper, exhibits good control and allows for the estimation of precise heat input. Also, workers can carry out the induction heating in a comfortable working environment. In this research, the induction heating simulation, which consists of electro-magnetic, heat transfer and thermal elasto-plastic analysis, was developed and modified through induction heating experiments. Finally, the effective heating coil was designed for the automatic hull forming system based on the results of induction heating simulation. For the purposes of a future study, if an algorithm to obtain optimal working conditions is developed, automatic systems for hull forming can then be constructed.

Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating (유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과)

  • Yang, Young-Soo;Bae, Kang-Yul;Shin, Hee-Yun
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화-)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

On the analysis of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석적 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.53-56
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process. Also experiment is carried out process that is designed through simulation.

  • PDF

On the effective analysis method of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석 효율성 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.56-59
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process.

  • PDF