• Title/Summary/Keyword: Elasto-Plastic soil

Search Result 108, Processing Time 0.022 seconds

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

Three-Dimensional Analysis of the Laterally Loaded Pile in Elasto-Plastic Soil by Finite Element Method (탄소성 지반중의 횡각을 받는 말뚝의 유한요소법에 의한 삼차원 해석에 관한 연구)

  • 박성재;배종순
    • Geotechnical Engineering
    • /
    • v.2 no.2
    • /
    • pp.5-16
    • /
    • 1986
  • Reasonable solutions are needed when the lateral load acting on the head of a pile can not be ignored. There are many difficulties in analyzing the displacement of a laterally loaded Pile because of the complex interaction between the pile and the surrounding soil. In this paper, assuming that a pile and surrounding soil are elasto-plastic mass, and discontinuity between the two is connected with interface elements, writers have tried to solve the problem by using three-dimensional finite element method. Furthermore, the results of numerical analysis obtained by the developed program in this study have been compared with measured field values. The conclusions of this study are as follows; 1. Assuming that the soil behaves as an elasto-plastic mass, there has been a good agreement with measured field displacements. 2. It has been confirmed that interface elements overcome discontinuity between a pile and surrounding soil. 3. As the thickness of interface elements Increases, the stress and the displacement decrease. Al- though the difference is not significant, good results can be expected when it is as thin as possible.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF

A Finite Element Analysis of Circular Plate Resting on Elasto-Plastic Soil Medium (탄소성(彈塑性) 지반(地盤)위에 놓인 원형평판(圓形平板)의 유한요소(有限要素) 해석(解析))

  • Kim, Sung Deuk;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.91-102
    • /
    • 1987
  • In this study, the finite element method using 8-node isoparametric element is developed theoretically and simulated to see the deformation of soil and plate, when the circular plate resting on Boussinesq's soil type is loaded axisymmetrically. The results of numerical analysis using the Mohr-Coulomb yield criterion, and experimental analysis are approximative, assuming that soil is elasto-plastic medium. The paper shows that the plastic zone of soil medium is displayed at the near the edge of plate at the first place; when the plastic zone of soil medium is linked around central axis, the external load is termed by critical load, and then the contact pressure changes abruptly, in this case it is approved to be the risk of shear failure.

  • PDF

Pre-stress Effect of Geosynthetics-reinforced Soil Structure (토목섬유로 보강된 구조물의 프리스트레스효과)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.53-65
    • /
    • 2005
  • This paper presented a mechanism of the soil structure reinforced by geosynthetics, in which the reinforcing mechanism is treated as the effect arising from the reinforcement process to prevent the dilative deformation of soil under shearing. A full-scale in-situ model test was carried out by introducing the prestress method to enhance the geosynthetic-reinforcement, and the prestress effect through the FEM is also examined. The elasto-plastic model and the initial parameters needed in the FEM are presented. Moreover, the theoretical prediction is compared with the experimental results, which were obtained by a full-scale in-situ model test.

Numerical Analysis of Geosynthetics-Reinforced Soil Structure with Pre-stress (프리스트레스 방법을 적용한 토목섬유 보강토 구조물의 수치해석)

  • Kim, Eun-Ra;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.21-33
    • /
    • 2005
  • This paper presented a mechanism of the soil structure reinforced by geosynthetics, in which the reinforcing mechanism is treated as the effect arising from the reinforcement process to prevent the dilative deformation of soil under shearing. A full-scale in-situ model test was carried out by introducing the prestress method to enhance the geosynthetic-reinforcement, and the prestress effect through the FEM is also examined. The elasto-plastic model and the initial parameters needed in the FEM are presented. Moreover, the theoretical prediction is compared with the experimental results, which were obtained by a full-scale in-situ model test.

  • PDF

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.