• Title/Summary/Keyword: Elasto-Plastic Finite Element Method

Search Result 244, Processing Time 0.048 seconds

A Finite Element Analysis of Circular Plate Resting on Elasto-Plastic Soil Medium (탄소성(彈塑性) 지반(地盤)위에 놓인 원형평판(圓形平板)의 유한요소(有限要素) 해석(解析))

  • Kim, Sung Deuk;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.91-102
    • /
    • 1987
  • In this study, the finite element method using 8-node isoparametric element is developed theoretically and simulated to see the deformation of soil and plate, when the circular plate resting on Boussinesq's soil type is loaded axisymmetrically. The results of numerical analysis using the Mohr-Coulomb yield criterion, and experimental analysis are approximative, assuming that soil is elasto-plastic medium. The paper shows that the plastic zone of soil medium is displayed at the near the edge of plate at the first place; when the plastic zone of soil medium is linked around central axis, the external load is termed by critical load, and then the contact pressure changes abruptly, in this case it is approved to be the risk of shear failure.

  • PDF

Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor (액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

On the Effect of Plate Curvature on Welding Deformation (용접변형에의 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung;Lee, Jin-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.

An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method (I) -Effects of Friction and Inertia Force- (엑스플리시트 시간 적분 유한요소법을 이용한 고속 성형 해석 (I) -마찰 및 관성 효과-)

  • 유요한;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Two-dimensional explicit finite element code was developed. The transient dynamics code can analyse large deformations of non-linear materials subjected to extremely high strain rates. The Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion, thus the stiffness matrix is not introduced. Cylinder upsetting and ring compression problems are simulated to check the effects of friction and inertia force. It is shown that (1) calculated results agree very well with experimental results, (2) constant shear friction method overestimates the decrease of inner ring radius and then underestimates after on in comparison with the Coulomb friction method, and (3) the effect of the increase in initial strain rate is similar to the effect of higher frictional coefficient.

HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 정사각형판

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 1990
  • In this paper, ultimate compressive strength of TMCP 50HT steel plates (yield stress .sigma.$_{o}$=36kg/mm$^{2}$) with HAZ softening is studied. Finite element method formulated by the author is applied to analyze the elasto-plastic large deflection behaviour of the plates. The influence of HAZ softening breadth, welding direction and slenderness ratio on the ultimate compressive strength is investigated. The results obtained are summarized as 1) With the increasing of the HAZ softening breadth, early plasticity on the plates is formed and then the ultimate compressive strength is decreased, in which about 8% of the ultimate strength for the plate with h/t=4(h: HAZ softening breadth, t: plate thickness) was reduced comparing with no HAZ softening. 2) The large decrease of the ultimate strength for the case that the welding direction is normal to the loading direction is occurred than the case that the welding direction is parallel to the loading direction. 3) The influence of HAZ softening on the ultimate compressive strength is serious for thick plates, while it may be negligible for thin plates.s.

  • PDF

Dynamic Nonlinear Analysis of Stiffened Shell Structures (보강된 쉘구조의 동적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.57-64
    • /
    • 2001
  • For the dynamic nonlinear analysis of stiffened plate and shell structures, total Lagrangian formulation is presented based upon the degenerated shell element considering finite rotation effects. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. In the elasto-plastic analysis, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to collapse analysis of shell structures. Newmark integration method is used for dynamic nonlinear analysis of shell structures under dynamic forces.

  • PDF

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes (감육된 탄소강배관의 변형과 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.