• 제목/요약/키워드: Elasticity modules

검색결과 10건 처리시간 0.027초

Effect of aggregate mineralogical properties on high strength concrete modulus of elasticity

  • Kaya, Mustafa;Komur, M. Aydin;Gursel, Ercin
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.411-422
    • /
    • 2022
  • Aggregates mineralogical, and petrographic properties directly affect the mechanical properties of the produced high strength. This study is focused on the effects of magmatic, sedimentary, and metamorphic aggregates on the performance of high strength concrete. In this study, the effect of the mineralogical properties of aggregates on the compressive strength and modulus of elasticity of high-strength concrete was estimated by Artifical Neural Network (ANN). To estimate the compressive strength and elasticity modules, 96 test specimens were produced. After 28 days under suitable conditions, tests were carried out to determine the compressive strength and modulus of elasticity of the test specimens. This study also focused on the application of artificial neural networks (ANN) to predict the 28-day compressive strength and the modulus of elasticity of high-strength concrete. An ANN model is developed, trained, and tested by using the available test data obtained from the experimental studies. The ANN model is found to predict the modulus of elasticity, and 28 days compressive strength of high strength concrete well, within the ranges of the input parameters. These comparisons show that ANNs have a strong potential to predict the compressive strength and modulus of elasticity of high-strength concrete over the range of input parameters considered.

RC구조물 접착 보수$\cdot$보강용 에폭시수지 및 보강재료의 재료특성 평가 (Evaluation of Reinforced Materials and Epoxy Resins for Adhesion Repairing-Reinforced of RC Construction)

  • 박용규;주은희;이건철;변항용;우종완;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.183-186
    • /
    • 2005
  • This study investigates material properties of epoxy resins and reinforced materials for adhesion repairing-reinforced of RC construction. According to the test. elasticity modulus of mortar indicated 16-26(GPa) and that of concrete was 18-27(GPa). It became decreased as mixture proportion, W/C and fluidity of both mortar and concrete increased In addition the elasticity modulus of epoxy resins exhibited around 45.3-220(GPa), while that of steel plate and Carbon Bar indicated 338(GPa) and 34.1 (GPa), respectively. It is obvious that individual materials had big different value of elasticity modulus. Meanwhile, thermal expansion coefficients of mortar was 10-13 ${\mu}\varepsilon$ /$^{\circ}C$ and that of concrete was 9-11 $\mu \varepsilon$ /$^{\circ}C$ The increase of mixture Voportion and W/C resulted in lower value of thermal expansion coefficients and the increase of flow and slump exhibited slightly higher value. The epoxy resin indicated 41-54 ${\mu}\varepsilon$ /$^{\circ}C$ which is 4-5 times larger value than concrete and steel plate and Carbon Bar was 11.93 ${\mu}\varepsilon$ /$^{\circ}C$ and -1.68 ${\mu}\varepsilon$ /$^{\circ}C$ respectively. Hence, the adhesion strength of the epoxy resins should be considered before it is used in field condition, due to different thermal expansion coefficient of each material.

  • PDF

고로 슬래그 미분말을 사용한 고강도 콘크리트의 특성 (Properties of High Strength Concrete Incorporating Fine Blast Furnace Slag)

  • 이봉학;이주형;홍창우
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.59-67
    • /
    • 1998
  • The object of this study is to investigate the strength characteristics and the freeze-thaw resistance of high strength concrete incorporating fine blast furnace slag. Major experimental variables were the water/cement ratio, maximum size of coarse aggregate, and cement types such as ordinary portland and slag cement. The results were as follows ; The workability of fresh concrete incorporating fine blast furnace slag was better than that of OPC(ordinary Portland cement) in terms of slump. The freeze-thaw resistance showed better than that of OPC, keeping more than 90% of relative modules of elasticity after 506 cycles and showing only a hair crack at surface without serious damage. Thus, the fine blast furnace slag might be recycled at concrete to make high strength concrete at fields.

  • PDF

A new integrated method to design of rock structures

  • Aksoy, Okay C.;Uyar, Gulsev G.;Utku, Semih;Safak, Suleyman;Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.339-352
    • /
    • 2019
  • Rockmass parameters are used in the design of engineering structures built in rock and soil. One of the most important of these parameters is the rockmass Emass (Emass). Determination of the Emass of rockmass is a long, hard and expensive job. Therefore, empirical formulas developed by different researchers are used. These formulas use the elastic modulus of the material as a parameter. This value is a constant value in the design. However, engineering structures remain under different loads depending on many factors, such as topography, geometry of the structure, rock / soil properties. Time is other important parameter for rock/soil structure. With the start of the excavation, the loads that the structure is exposed to will change and remain constant at one level. In the new proposed method, the use of different Emass calculated from empirical formulas using the different material elastic modulus, which has different values under different loads as time dependent, was investigated in rock/soil structures during design. The performance of the stability analysis using different deformation modules was questioned by numerical modeling method. For this query, a sub-routine which can be integrated into the numerical modeling software has been developed. The integrated sub-routine contains the formula for the Emass, which is calculated from the material elasticity modules under time dependent and different constant loads in the laboratory. As a result of investigations conducted in 12 different field studies, the new proposed method is very sensitive.

서스펜션 P.S. 검층을 이용한 해저 지반의 동역학적 특성에 관한 연구 (A Study on the Dynamic Characteristics of on-shore Ground Using Suspension P. S. Logging)

  • 김용수;정승용;장찬수;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.357-364
    • /
    • 1999
  • In recently site investigations, the need for the determination of dynamic soil properties such as dynamic modules of rigidity, elasticity, dynamic poison's ratio and damping ratio etc. is increasing for the astigmatic designs of the civil structures. To obtain some of the dynamic properties, measurement of elastic waves velocity, both P and S wave, is required. Among various methods to measure elastic wave velocity such and Down Hole, Cross Hole and Refraction etc., Suspension P.S. Logging has an advantage to use for the off-shore investigation where generation of the shock wave and traveling of the wave is difficult. In suspension P.S. logging, specially designed prove equipped with source of shock wave, two 3-channel receivers, departing 1m distance, and other auxiliary facilities is inserted down in a bore hole bottom and raised in predetermined interval, usually 1m or 2m, and measurement is conducted. P.S. logging have been conducted in a off-shore construction project near InChon in the west coast for the first in the country, and form the result, potential of the liquefaction of the subsoil was evaluated and compared with the conventional method.

  • PDF

부유식 풍력발전 시스템 동역학 해석 프로그램 개발 연구 (A Study on a Dynamics Simulation Program Development for Floating Wind Turbines)

  • 임채환;송진섭;정태영;문석준;고진용;이성균;배대성;배동희
    • 풍력에너지저널
    • /
    • 제2권2호
    • /
    • pp.30-37
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, WindHydro, is newly developed taking into account wind inflow and incident wave. WindHydro consists of 5 modules, HDFloat for hydrodynamics, HDProp for hydrodynamic property calculation, HDMoor for mooring dynamics, AeroDyn for aerodynamics, DAFUL for multi-body dynamics with nonlinear elasticity, and interface program that connects each calculation module. A turbulent wind and regular wave load case is simulated for the 5-MW OC3-Hywind with a spar bouy platform and catenary mooring lines. The results are compared with the results of the FAST(developed by NREL). As a result, the overall system responses from WindHydro and FAST agree well although some differences in the generator responses are observed.

GFRP Rebar로 보강된 콘크리트보의 피로 휨·부착성능에 관한 실험적 연구 (An Experimental Study on the Fatigue Flexural Bonding Characteristic of Concrete Beam Reinforced with GFRP Rebar)

  • 오홍섭;심종성;강태성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.101-108
    • /
    • 2008
  • 본 연구에서는 철근과 같은 기계적 맞물림 현상을 활용하기 위하여 이형리브가 형성되어 있는 GFRP 보강근을 제작하여 철근대체 재료로 사용하기 위해 FRP 보강근의 부착성능을 규명하고자 한다. 하지만 지금까지 많은 기존 연구자들이 부착성능에 대한 실험으로 단순 1방향(수직, 수평)인장실험으로 철근과 콘크리트 또는 FRP 보강근과 콘크리트사이의 부착특성을 고찰하여 두 재료 사이의 부착-슬립에 관한 제안식을 도출해왔다. 국내에서는 아직까지 GFRP 보강근의 부착에 대한 관심이 증대대고 있는 실정이지만 피로부착에 관한연구는 미흡한 편이이어서 GFRP 보강근의 피로 연구가 필요로 하다. 본 연구에서는 BRITISH STANDARD에서 규정하고 있는 방법에 의하여 휨 부착 시험체를 제작하여 정적 휨 부착실험 최대파괴하중의 70% ~ 90%의 하중으로 반복하중재하 후 정적실험을 통하여 GFRP로 보강된 콘크리트 피로부착 성능을 검증하였다.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

RC구조물 접착 보수·보강 공법의 박리와 연관한 재료의 변형 거동 분석 (Deformation Behavior Investigation of Materials by Debonding Failure in Adhesion and Repairing-strengthening Methods of RC Construction)

  • 한천구;변항용;박용규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권5호
    • /
    • pp.89-98
    • /
    • 2007
  • 본 연구에서는 RC구조물의 접착 보수 보강 재료의 박리와 연관한 변형 거동에 대하여 검토하였다. 응력-변형곡선에서 최대응력 이후 항복을 일으킬 수 있는 변형량은 바탕재인 시멘트 모르터의 경우 $2.0{\times}10^{-3}$, 콘크리트는 $1.3{\times}10^{-3}$ 전후이고, 접착제인 에폭시수지 $0.8{\times}10^{-3}$, 폴리머 시멘트 모르터 $2.5{\times}10^{-3}$이며, 보강재인 강판과 탄소봉은 2.5와 $9.1{\times}10^{-3}$정도인 것으로 밝혀졌다. 온도변화에 따른 선팽창계수는 바탕재인 시멘트 모르터 및 콘크리트의 경우 $10{\mu}{\varepsilon}/{^{\circ}C}$전후인데 비하여, 접착제인 에폭시 수지는 $41{\sim}54{\mu}{\varepsilon}/{^{\circ}C}$, 폴리머 시멘트 모르터는 $-0.5{\sim}0.7{\mu}{\varepsilon}/{^{\circ}C}$, 보강재인 강판은 바탕재료와 비슷하지만, 탄소섬유는 $-1.7{\mu}{\varepsilon}/{^{\circ}C}$로 제일 작은 값이었다. 특히 바탕재료인 콘크리트와 에폭시수지 접착제간에는 온도변화에 따른 선팽창계수 차이가 크게 발생하였는데, 에폭시 수지 종류에 따라 약간의 차이는 있지만, $20{\sim}35{^{\circ}C}$이상의 온도차가 발생하는 조건이면 에폭시수지 접착제는 콘크리트 접착면에서 자연적으로 박리 할 수도 있는 것으로 밝혀졌다.

Flowable Composite Resin의 미세변연누출 및 전단결합강도 (MICROLEAKAGE AND SHEAR BOND STRENGTH OF FLOWABLE COMPOSITE RESIN)

  • 박성준;오명환;김오영;이광원;엄정문;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.332-340
    • /
    • 2001
  • Flowable composite resin has lower filler content, increased flow, and lower modules of elasticity. It is suggested that flowable composite resin can be bonded to the tooth structure intimately and absorb or dissipate the stress. Therefore, it may be advantageous to use flowable composite resin for the base material of class II restoration and for the class V restoraton. The purpose of this study was to evaluate the microleakage and shear bond strength of four flowable composite resins (Aeliteflo, Flow-It, Revolution, Ultraseal XT Plus) compared to Z100 using Scotchbond Multi Purpose dentin bonding system. To evaluate the microleakage, notch-shaped class V cavities were prepared on buccal and lingual surfaces of 80 extracted human premolars and molars on cementum margin. The teeth were randomly divided into non-thermocycling group (group 1) and thermocycling group (group 2) of 40 teeth each. The experimental teeth of each group were randomly divided onto five subgroups of eight samples (sixteen surfaces). The Scotchbond Multi-Purpose and composite resin were applied for each group following the manufacturer's instructions. the teeth of group 2 were thermocycled five hundred times between 5$^{\circ}C$ and 55$^{\circ}C$. The teeth of group 2 were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, and sectioned longitudinally with a diamond saw. The dye penetration on each of the specimen were observed with a stereomicioscope at $\times$20 magnification. To evaluate the shear bond strength, 60 teeth were divided into five groups of twelve teeth each. The experimental teeth were ground horizontally below the dentinoenamel junction, so that no enamel remained. After applying Scotchbond Multi-Purpose on the dentin surface, composite resin was applied in the shape of cylinder. The cylinder was 4mm in diameter and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. After shear bond strength measurement, mode of failure was evaluated with a stereomicroscope at $\times$30 magnification. All data were statistically analyzed by One Way ANOVA and Student-Newman-Keuls method. The correlation between microleakage and shear bond strength was analyzed by linear regression. The results of this study were as follows ; 1. In non-thermocycling group, the leakage value of Z100 was significantly lower than those of flowable composite resins at the enamel and dentin margin, margin, except that Revolution showed the lower leakage value than that of Z100 at the dentin margin (p<0.05). 2. In thermocycling group, the leakage values of Z100 and Ultraseal XT Plus were lower than those of other subgroup at the enamel and dentin margin, except that Flow-It showed the lower leakage value than that of Ultraseal XT Plus at the dentin margin (p<0.05). 3. The leakage value of Z100 and Ultraseal XT Plus in thermocycling group were not higher than that in non-thermocycling group at the enamel margin. The leakage value of Z100 in thermocycling group was not higher than that in non-thermocycling group at the dentin margin (p<0.05). 4. As for the shear bond strength measurement, there were no statistically significant differences among groups (p<0.05). The shear bond strengths given in descending order were as follows: Z100(16.81$\pm$2.98 MPa), Flow-It(14.8$\pm$4.43 MPa), Aeliteflo(14.34$\pm$3.69 MPa), Revolution(13.46$\pm$4.23 MPa), Ultraseal XT Plus(12.83$\pm$3.16 MPa). 5. Failure modes of all specimens were adhesive failures. 6. There was no correlation between microleakage and shear bond strength.

  • PDF