• Title/Summary/Keyword: Elastic-plastic Deformation

Search Result 481, Processing Time 0.033 seconds

An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis (분기좌굴이론의 탄소성 유한요소법에의 적용)

  • 김종봉;양동열;윤정환
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

A Experimental Study on the Stability Management Method using change of Inclination for Embankment on Soft Clay (연약지반 성토시의 기울기변화를 이용한 안정관리기법에 관한 실험적 연구)

  • Ryu, Ji-Hoon;Im, Jong-Chul;Chang, Ji-Keon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.898-905
    • /
    • 2005
  • The settlement of embankment on soft clay includes shear settlement due to shear deformation. Even though the consolidation settlement is not related to lateral displacement, but shear settlement makes the embankment unstable because it deforms ground and decreases the ground strength. In order to determine the shear deformation behaviour during embankment construction, 3 cases (1B, 2B, and 3B) of rapid undrained loading tests on soft clays were performed. Shear settlement is consist of elastic settlement, plastic settlement and viscous settlement. Elastic settlement isn't considered because the range is small, therefore the first is the range of plastic displacement, and the second is that of viscous displacement in the displacement-time curve for each loading stage. After determining that the change in the inclination of the viscous displacement range is larger than in the plastic displacement range after the ground failure occurs for the loading stage, the stability management methods were suggested considering that it is hard to divide the plastic displacement range and the viscous displacement range. The stability management method was based on the ratio of the plastic displacement range's inclination and the viscous displacement range's inclination. A stability management method based on the ratio of the total inclination for each loading stage compared to the whole inclination in the initial loading stage was also recommended.

  • PDF

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

New Engineering J and COD Estimation Methods for Axial Through-Wall Cracked Pipes (축방향 관통균열 배관의 새로운 탄소성 J-적분 및 COD 계산식)

  • Huh, Nam-Su;Park, Young-Jae;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • This paper proposes engineering estimation equations of elastic-plastic J and COD fur axial through-wall cracked pipes under internal pressure. Based on detailed 3-D FE results based on deformation plasticity, the plastic influence functions for fully plastic J and COD solutions are tabulated as a function of the mean radius-to-thickness ratio, the normalized crack length. and the strain hardening. Based on these results, the GE/EPRI-type J and COD estimation equations are proposed and validated against the 3-D FE results based on deformation plasticity. For more general application to general stress-strain laws or to complex loading, the developed GE/EPRI-type solutions are re-formulated based on the reference stress concept. Such a reformulation provides simpler equations for J and COD, which are then further extended to combined internal pressure and bending. The proposed reference stress based J and COD estimation equations are compared with elastic-plastic 3-D FE results using actual stress-strain data for Type 316 stainless steels. The FE results for both internal pressure cases and combined internal pressure and bending cases compare very well with the proposed J and COD estimations.

Finite element analysis of welding processes (용접공정의 유한요소해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.465-467
    • /
    • 2004
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical examples. Several locking phenomena removed by Solid-shell element.

  • PDF

The properties of hybrid FRP rebar for concrete structures (콘크리트 보강용 하이브리드 FRP 리바의 특성)

  • 원종필;박찬기;황금식;윤종환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration. It is FRP rebar that is developed to solve problem of such steel rebar. FRP rebar in concrete structures should be used as a substitute of steel rebars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP rebar have only linearly elastic behavior; whereas, steel rebar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP rebars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse in required. The main objective of this study was to develop new type of hybrid FRP rebar. The manufacture of the hybrid FRP rebar was achieved pultrusion, braiding and filament winding techniques. Tensile and interlaminar shear test results of hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

  • PDF

Analysis on the Load Carrying Capacity of Steel Bridges Considering Initial Stress (강교의 초기응력을 고려한 내하력 해석)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.129-136
    • /
    • 2004
  • Almost the steel bridges are manufactured and constructed by using weld process. The welding is necessary for connecting the flange, web and stiffener of steel bridges. However, residual stress and welding deformation producted by welding is a causes of decreasing the load carrying capacity of steel bridges. therefore, it is need to consider the initial stresses by welding when design the steel bridge. However, the influence of initial stress producted by welding on load carrying capacity of steel bridges is not elucidated. In this paper, the initial stress state on the flange, web and stiffener of steel bridges are clarified by carrying out 3-dimensional non-steady heat conduction analysis and 3-dimensional thermal elastic-plastic analysis. The influence of initial stress by welding on load carrying capacity of steel bridges is clarified by carrying out 3-dimensional elastic-plastic finite element analysis using finite deformation theory.

  • PDF

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

Finite Element Analysis of Mechanical Behavior of Bolt Tightened in Plastic Region (소성역 체결 볼트의 기계적 거동 유한요소해석)

  • Cho, Sung-San;Shin, Chun-Se
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Plastic region tightening is widely used in critical bolted joints in internal combustion engines in order to reduce the engine weight by maximizing the use of load-carrying capacity of bolt. Mechanical behavior of bolt tightened in plastic region under external axial tensile load is investigated for various friction conditions using three dimensional finite element analysis. The behavior of bolt tightened in elastic region as well as that in tensile test are investigated for comparison. Tightening process is simulated by rotating the bolt in order to examine the friction effect realistically. It is revealed that the bolt tightened in plastic region can carry more external load until the joint is opened, and yields at lower bolt load than the bolt tightened in elastic region. The friction coefficient has effect on the yield load, but not on the load-carrying capacity. Moreover, the scatter in the bolt preload due to friction begins with plastic deformation of bolt in the angle tightening control, whereas it begins with the onset of tightening in the torque tightening control. The observations are interpreted with the residual torsional stress in the bolt generated during the tightening.

A Simplified Method to Predict the Weld-induced Deformation of Curved Plates (곡판의 용접변형 예측을 위한 간이 해석법)

  • Lee, Joo-Sung;Hoi, Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.474-481
    • /
    • 2007
  • A three-dimensional finite element model has been used to simulate the bead on plate welding of curved steel plates having curvature in the welding direction. By using traditional method such as thermal-elastic-plastic(TEP) finite element analysis. the weld-induced deformation can be accurately predicted. However, three-dimensional finite element analysis is not practical in analyzing the weld-induced deformation of large and complex structures such as ship structures in view of computing time and cost. In this study, used is the equivalent loading method based on inherent strain to illustrate the effect of the longitudinal curvature upon the weld-induced deformation of curved plates.